ﻻ يوجد ملخص باللغة العربية
The extremely high thermal conductivity of graphene has received great attention both in experiments and calculations. Obviously, new feature in thermal properties is of primary importance for application of graphene-based materials in thermal management in nanoscale. Here, we studied the thermal conductivity of graphene helicoid, a newly reported graphene-related nanostructure, using molecular dynamics simulation. Interestingly, in contrast to the converged cross-plane thermal conductivity in multi-layer graphene, axial thermal conductivity of graphene helicoid keeps increasing with thickness with a power law scaling relationship, which is a consequence of the divergent in-plane thermal conductivity of two-dimensional graphene. Moreover, the large overlap between adjacent layers in graphene helicoid also promotes higher thermal conductivity than multi-layer graphene. Furthermore, in the small strain regime (< 10%), compressive strain can effectively increase the thermal conductivity of graphene helicoid, while in the ultra large strain regime (~100% to 500%), tensile strain does not decrease the heat current, unlike that in generic solid-state materials. Our results reveal that the divergence in thermal conductivity, associated with the anomalous strain dependence and the unique structural flexibility, make graphene helicoid a new platform for studying fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene-related materials.
The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial
Graphene was recently proposed as a material for heat removal owing to its extremely high thermal conductivity. We simulated heat propagation in silicon-on-insulator circuits with and without graphene lateral heat spreaders. Numerical solutions of th
We report on heat conduction properties of thermal interface materials with self-aligning magnetic grapheme fillers. Graphene enhanced nano-composites were synthesized by an inexpensive and scalable technique based on liquid-phase exfoliation. Functi
We investigated theoretically the phonon thermal conductivity of single layer graphene. The phonon dispersion for all polarizations and crystallographic directions in graphene lattice was obtained using the valence-force field method. The three-phono
We investigated thermal properties of the epoxy-based composites with a high loading fraction - up to f=45 vol.% - of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that