ﻻ يوجد ملخص باللغة العربية
With its origin in sociology, Social Network Analysis (SNA), quickly emerged and spread to other areas of research, including anthropology, biology, information science, organizational studies, political science, and computer science. Being its objective the investigation of social structures through the use of networks and graph theory, Social Network Analysis is, nowadays, an important research area in several domains. Social Network Analysis cope with different problems namely network metrics, models, visualization and information spreading, each one with several approaches, methods and algorithms. One of the critical areas of Social Network Analysis involves the calculation of different centrality measures (i.e.: the most important vertices within a graph). Today, the challenge is how to do this fast and efficiently, as many increasingly larger datasets are available. Recently, the need to apply such centrality algorithms to non static networks (i.e.: networks that evolve over time) is also a new challenge. Incremental and dynam
Competition networks are formed via adversarial interactions between actors. The Dynamic Competition Hypothesis predicts that influential actors in competition networks should have a large number of common out-neighbors with many other nodes. We empi
There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal ev
Understanding the network structure, and finding out the influential nodes is a challenging issue in the large networks. Identifying the most influential nodes in the network can be useful in many applications like immunization of nodes in case of ep
Gould and Fernandez (1989) developed a local brokerage measure that defines brokering roles based on the group membership of the nodes from the incoming and outgoing edges. This paper extends on this brokerage measure to account for weighted edges an
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 cite{xu2016}), we measure the contribution of a path in link prediction with information entro