ﻻ يوجد ملخص باللغة العربية
We introduce a generalized notion of inference system to support more flexible interpretations of recursive definitions. Besides axioms and inference rules with the usual meaning, we allow also coaxioms, which are, intuitively, axioms which can only be applied at infinite depth in a proof tree. Coaxioms allow us to interpret recursive definitions as fixed points which are not necessarily the least, nor the greatest one, whose existence is guaranteed by a smooth extension of classical results. This notion nicely subsumes standard inference systems and their inductive and coinductive interpretation, thus allowing formal reasoning in cases where the inductive and coinductive interpretation do not provide the intended meaning, but are rather mixed together.
After surveying classical results, we introduce a generalized notion of inference system to support structural recursion on non-well-founded data types. Besides axioms and inference rules with the usual meaning, a generalized inference system allows
We present guarded dependent type theory, gDTT, an extensional dependent type theory with a `later modality and clock quantifiers for programming and proving with guarded recursive and coinductive types. The later modality is used to ensure the produ
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be
Recursive definitions of predicates are usually interpreted either inductively or coinductively. Recently, a more powerful approach has been proposed, called flexible coinduction, to express a variety of intermediate interpretations, necessary in som
This note formally defines the concept of coinductive validity of judgements, and contrasts it with inductive validity. For both notions it shows how a judgement is valid iff it has a formal proof. Finally, it defines and illustrates the notion of a proof by coinduction.