ﻻ يوجد ملخص باللغة العربية
A Lie 2-group $G$ is a category internal to the category of Lie groups. Consequently it is a monoidal category and a Lie groupoid. The Lie groupoid structure on $G$ gives rise to the Lie 2-algebra $mathbb{X}(G)$ of multiplicative vector fields, see (Berwick-Evans -- Lerman). The monoidal structure on $G$ gives rise to a left action of the 2-group $G$ on the Lie groupoid $G$, hence to an action of $G$ on the Lie 2-algebra $mathbb{X}(G)$. As a result we get the Lie 2-algebra $mathbb{X}(G)^G$ of left-invariant multiplicative vector fields. On the other hand there is a well-known construction that associates a Lie 2-algebra $mathfrak{g}$ to a Lie 2-group $G$: apply the functor $mathsf{Lie}: mathsf{Lie Groups} to mathsf{Lie Algebras}$ to the structure maps of the category $G$. We show that the Lie 2-algebra $mathfrak{g}$ is isomorphic to the Lie 2-algebra $mathbb{X}(G)^G$ of left invariant multiplicative vector fields.
We show that the category of vector fields on a geometric stack has the structure of a Lie 2-algebra. This proves a conjecture of R.~Hepworth. The construction uses a Lie groupoid that presents the geometric stack. We show that the category of vector
The systematic study of CR manifolds originated in two pioneering 1932 papers of Elie Cartan. In the first, Cartan classifies all homogeneous CR 3-manifolds, the most well-known case of which is a one-parameter family of left-invariant CR structures
The Linearization Theorem for proper Lie groupoids organizes and generalizes several results for classic geometries. Despite the various approaches and recent works on the subject, the problem of understanding invariant linearization remains somehow
We are interested in the class, in the Elie Cartan sense, of left invariant forms on a Lie group. We construct the class of Lie algebras provided with a contact form and classify the frobeniusian Lie algebras up to a contraction. We also study forms
We prove how the universal enveloping algebra constructions for Lie-Rinehart algebras and anchored Lie algebras are naturally left adjoint functors. This provides a conceptual motivation for the universal properties these constructions satisfy. As a