ﻻ يوجد ملخص باللغة العربية
We numerically investigate some properties of unbalanced St{u}ckelberg holographic superconductors, by considering backreaction effects of fields on the background geometry. More precisely, we study the impacts of the chemical potential mismatch and St{u}ckelberg mechanism on the condensation and conductivity types (electrical, spin, mixed, thermo-electric, thermo-spin and thermal conductivity). Our results show that the St{u}ckelbergs model parameters $C_{alpha}$ and $alpha$ not only have significant impacts on the phase transition, but also affect the conductivity pseudo-gap and the strength of conductivity fluctuations. Moreover, the effects of these parameters on a system will be gradually reduced as the imbalance grows. We also find that the influence of $alpha$ on the amplitude of conductivity fluctuations depends on the magnitude of the both $C_{alpha}$ and $deltamu/mu$ in the electric and thermal conductivity cases. This results in that increasing $alpha$ can damp the conductivity fluctuations of an unbalanced system in contrast to balanced ones.
Solitons are important nonperturbative excitations in superfluids. For holographic superfluids, we numerically construct dark solitons that have the symmetry-restored phase at their core. A central point is that we include the gravitational back-reac
We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by usi
We report the experimental observation of St{u}ckelberg oscillations of matter waves in optical lattices. Extending previous work on Landau-Zener tunneling of Bose-Einstein condensates in optical lattices, we study the effects of the accumulated phas
We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, $z$, indi
We investigate analytically the asymptotic critical behavior at large chemical potential of the conformal field living at the AdS boundary of a four-dimensional spacetime Einstein gravity. The threshold values of the chemical potential for the appear