Photometric and spectroscopic observations of the neglected near-contact binary Cl* Melotte 111 AV 1224


الملخص بالإنكليزية

This paper presents a photometric and spectroscopic study of the short-period binary star Cl*~Melotte~111~AV~1224. Measurements in the $B$, $V$, and $R$ passbands obtained during three observing runs between 2014 and 2017 and medium-resolution spectra secured in 2014, are analyzed together with public data from the SuperWASP and LAMOST projects. Our light curves show marked asymmetry with a variable OConnell effect. The SuperWASP photometry is used to derive a mean binary period of 0.345225 days. The analysis of the $(O-C)$ diagram reveals that the orbital period is decreasing at a rate of $dP/dt = -3.87 times 10^{-6}$ days yr$^{-1}$, which may be caused by mass transfer from the more-massive component to the less-massive one. The system is found to be a single-lined spectroscopic binary with a systemic velocity, $gamma = 1 pm 3$ Km s$^{-1}$, and a semi-amplitude, K$_{1}$ = 21 $pm$ 5 Km s$^{-1}$. The spectral classification and the effective temperature of the primary component are estimated to be K0V $pm$ 1 and $5200 pm 150$ K, respectively. The photometric and spectroscopic solutions reveal that Cl*~Melotte~111~AV~1224 is a low-mass ratio ($q=m_{2}/m_{1} sim 0.11$), low-inclination ($sim ~ 38^{circ}$) near-contact system. The masses, radii and luminosity for the primary and secondary are estimated to be $1.02 pm 0.06, M_odot$, $1.23 pm 0.05, R_odot $, $1.01 pm 0.06, L_odot$ and $0.11 pm 0.08, M_odot$, $0.45 pm 0.05, R_odot$, $0.10 pm 0.06, L_odot$, respectively. The marginal contact, together with the period decrease, suggests that this binary system may be at a key evolutionary stage, as predicted by the theory of thermal relaxation oscillations.

تحميل البحث