ﻻ يوجد ملخص باللغة العربية
Hierarchical Clustering (HC) is a widely studied problem in exploratory data analysis, usually tackled by simple agglomerative procedures like average-linkage, single-linkage or complete-linkage. In this paper we focus on two objectives, introduced recently to give insight into the performance of average-linkage clustering: a similarity based HC objective proposed by [Moseley and Wang, 2017] and a dissimilarity based HC objective proposed by [Cohen-Addad et al., 2018]. In both cases, we present tight counterexamples showing that average-linkage cannot obtain better than 1/3 and 2/3 approximations respectively (in the worst-case), settling an open question raised in [Moseley and Wang, 2017]. This matches the approximation ratio of a random solution, raising a natural question: can we beat average-linkage for these objectives? We answer this in the affirmative, giving two new algorithms based on semidefinite programming with provably better guarantees.
Hierarchical clustering is a popular unsupervised data analysis method. For many real-world applications, we would like to exploit prior information about the data that imposes constraints on the clustering hierarchy, and is not captured by the set o
Recently, Hierarchical Clustering (HC) has been considered through the lens of optimization. In particular, two maximization objectives have been defined. Moseley and Wang defined the emph{Revenue} objective to handle similarity information given by
Recent works on Hierarchical Clustering (HC), a well-studied problem in exploratory data analysis, have focused on optimizing various objective functions for this problem under arbitrary similarity measures. In this paper we take the first step and g
Hierarchical clustering is a fundamental task often used to discover meaningful structures in data, such as phylogenetic trees, taxonomies of concepts, subtypes of cancer, and cascades of particle decays in particle physics. Typically approximate alg
This paper compares BERT-SQuAD and Ab3P on the Abbreviation Definition Identification (ADI) task. ADI inputs a text and outputs short forms (abbreviations/acronyms) and long forms (expansions). BERT with reranking improves over BERT without reranking