ﻻ يوجد ملخص باللغة العربية
Existing speech recognition systems are typically built at the sentence level, although it is known that dialog context, e.g. higher-level knowledge that spans across sentences or speakers, can help the processing of long conversations. The recent progress in end-to-end speech recognition systems promises to integrate all available information (e.g. acoustic, language resources) into a single model, which is then jointly optimized. It seems natural that such dialog context information should thus also be integrated into the end-to-end models to improve further recognition accuracy. In this work, we present a dialog-context aware speech recognition model, which explicitly uses context information beyond sentence-level information, in an end-to-end fashion. Our dialog-context model captures a history of sentence-level context so that the whole system can be trained with dialog-context information in an end-to-end manner. We evaluate our proposed approach on the Switchboard conversational speech corpus and show that our system outperforms a comparable sentence-level end-to-end speech recognition system.
This paper addresses end-to-end automatic speech recognition (ASR) for long audio recordings such as lecture and conversational speeches. Most end-to-end ASR models are designed to recognize independent utterances, but contextual information (e.g., s
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from ano
We present a novel conversational-context aware end-to-end speech recognizer based on a gated neural network that incorporates conversational-context/word/speech embeddings. Unlike conventional speech recognition models, our model learns longer conve
We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional
Measuring performance of an automatic speech recognition (ASR) system without ground-truth could be beneficial in many scenarios, especially with data from unseen domains, where performance can be highly inconsistent. In conventional ASR systems, sev