ﻻ يوجد ملخص باللغة العربية
We propose a new method to create compact convolutional neural networks (CNNs) by exploiting sparse convolutions. Different from previous works that learn sparsity in models, we directly employ hand-crafted kernels with regular sparse patterns, which result in the computational gain in practice without sophisticated and dedicated software or hardware. The core of our approach is an efficient network module that linearly combines sparse kernels to yield feature representations as strong as those from regular kernels. We integrate this module into various network architectures and demonstrate its effectiveness on three vision tasks, object classification, localization and detection. For object classification and localization, our approach achieves comparable or better performance than several baselines and related works while providing lower computational costs with fewer parameters (on average, a $2-4times$ reduction of convolutional parameters and computation). For object detection, our approach leads to a VGG-16-based Faster RCNN detector that is 12.4$times$ smaller and about 3$times$ faster than the baseline.
Dilated Convolutions have been shown to be highly useful for the task of image segmentation. By introducing gaps into convolutional filters, they enable the use of larger receptive fields without increasing the original kernel size. Even though this
We introduce a novel and generic convolutional unit, DiCE unit, that is built using dimension-wise convolutions and dimension-wise fusion. The dimension-wise convolutions apply light-weight convolutional filtering across each dimension of the input t
Image convolutions have been a cornerstone of a great number of deep learning advances in computer vision. The research community is yet to settle on an equivalent operator for sparse, unstructured continuous data like point clouds and event streams
We introduce a fast and efficient convolutional neural network, ESPNet, for semantic segmentation of high resolution images under resource constraints. ESPNet is based on a new convolutional module, efficient spatial pyramid (ESP), which is efficient