ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalar Gravitational Radiation from Binaries: Vainshtein Mechanism in Time-dependent Systems

162   0   0.0 ( 0 )
 نشر من قبل Andrew Tolley
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a full four-dimensional numerical code to study scalar gravitational radiation emitted from binary systems and probe the Vainshtein mechanism in situations that break the static and spherical symmetry, relevant for binary pulsars as well as black holes and neutron stars binaries. The present study focuses on the cubic Galileon which arises as the decoupling limit of massive theories of gravity. Limitations associated with the numerical methods prevent us from reaching a physically realistic hierarchy of scales; nevertheless, within this context we observe the same power law scaling of the radiated power as previous analytic estimates, and confirm a strong suppression of the power emitted in the monopole and dipole as compared with quadrupole radiation. Following the trend to more physically realistic parameters, we confirm the suppression of the power emitted in scalar gravitational radiation and the recovery of General Relativity with good accuracy. This paves the way for future numerical work, probing more generic, physically relevant situations and sets of interactions that may exhibit the Vainshtein mechanism.



قيم البحث

اقرأ أيضاً

The Vainshtein screening mechanism relies on nonlinear interaction terms becoming dominant close to a compact source. However, theories displaying this mechanism are generally understood to be low-energy theories: it is unclear that operators emergin g from UV completion do not interfere with terms inducing Vainshtein screening. In this work, we find a set of interacting massive Galileon theories that exhibit Vainshtein screening; examining potential UV completions of these theories, we determine that the screening does not survive the extension. We find that neglecting operators when integrating out a heavy field is non-trivial, and either care must be taken to ensure that omitted terms are small for the whole domain, or one is forced to work solely with the UV theory. We also comment on massive deformations of the familiar Wess-Zumino Galileons.
We derive constraints on scalar field theories coupled to gravity by using recently developed positivity bounds in the presence of gravity. It is found that a canonically-normalized real scalar cannot have an arbitrarily flat potential unless some ne w physics enters well below the Planck scale. An upper bound on the scale of new physics is determined by loop corrections to the self-energy. Our result provides a swampland condition for scalar potentials.
287 - Hael Collins , R. Holman , 2012
We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar f ield taken to be in their free vacuum states at a finite initial time, we study the effects from the heavy field on the dynamics of the light field by analyzing the equation of motion for the expectation value of the light background field. New terms appear which cannot arise from a local action of an effective field theory in terms of the light field, though they disappear in the adiabatic limit. We discuss the origins of these terms as well as their possible implications for time dependent situations such as inflation.
In the first part of this paper we critically examine the ultra-violet implications of theories that exhibit Vainshtein screening, taking into account both the standard Wilsonian perspective as well as more exotic possibilities. Aspects of this discu ssion draw on results from the second part of the paper in which we perform a general study of derivatively coupled scalar theories using non-perturbative exact renormalisation group techniques, which are of interest independently of their application to modified gravity. In this context, we demonstrate the suppression of quantum corrections within the Vainshtein radius and discuss the potential relation with the classicalisation conjecture. We question whether the latter can be considered a realistic candidate for UV completion of large-scale modifications of gravity on account of a dangerously low classicalisation/strong coupling scale.
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configura tions of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null energy condition. There is a special subset of geodesically complete non-generic solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine tuning initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا