ﻻ يوجد ملخص باللغة العربية
We develop a full four-dimensional numerical code to study scalar gravitational radiation emitted from binary systems and probe the Vainshtein mechanism in situations that break the static and spherical symmetry, relevant for binary pulsars as well as black holes and neutron stars binaries. The present study focuses on the cubic Galileon which arises as the decoupling limit of massive theories of gravity. Limitations associated with the numerical methods prevent us from reaching a physically realistic hierarchy of scales; nevertheless, within this context we observe the same power law scaling of the radiated power as previous analytic estimates, and confirm a strong suppression of the power emitted in the monopole and dipole as compared with quadrupole radiation. Following the trend to more physically realistic parameters, we confirm the suppression of the power emitted in scalar gravitational radiation and the recovery of General Relativity with good accuracy. This paves the way for future numerical work, probing more generic, physically relevant situations and sets of interactions that may exhibit the Vainshtein mechanism.
The Vainshtein screening mechanism relies on nonlinear interaction terms becoming dominant close to a compact source. However, theories displaying this mechanism are generally understood to be low-energy theories: it is unclear that operators emergin
We derive constraints on scalar field theories coupled to gravity by using recently developed positivity bounds in the presence of gravity. It is found that a canonically-normalized real scalar cannot have an arbitrarily flat potential unless some ne
We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar f
In the first part of this paper we critically examine the ultra-violet implications of theories that exhibit Vainshtein screening, taking into account both the standard Wilsonian perspective as well as more exotic possibilities. Aspects of this discu
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configura