ﻻ يوجد ملخص باللغة العربية
This paper builds upon two key principles behind the Bourgain-Dyatlov quantitative uniqueness theorem for functions with Fourier transform supported in an Ahlfors regular set. We first provide a characterization of when a quantitative uniqueness theorem holds for functions with very quickly decaying Fourier transform, thereby providing an extension of the classical Paneah-Logvinenko-Sereda theorem. Secondly, we derive a transference result which converts a quantitative uniqueness theorem for functions with fast decaying Fourier transform to one for functions with Fourier transform supported on a fractal set. As well as recovering the result of Bourgain-Dyatlov, we obtain analogous uniqueness results for denser fractals.
It is well-known that entire functions whose spectrum belongs to a fixed bounded set $S$ admit real uniformly discrete uniqueness sets $Lambda$. We show that the same is true for much wider spaces of continuous functions. In particular, Sobolev space
We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of Fast Fourier Transforms reco
The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in con- junction of the replica method used to study thermodynamics properties of disordered systems such
We study the restriction of the Fourier transform to quadratic surfaces in vector spaces over finite fields. In two dimensions, we obtain the sharp result by considering the sums of arbitrary two elements in the subset of quadratic surfaces on two di
The aim of the article is to prove $L^{p}-L^{q}$ off-diagonal estimates and $L^{p}-L^{q}$ boundedness for operators in the functional calculus of certain perturbed first order differential operators of Dirac type for with $ple q$ in a certain range o