ترغب بنشر مسار تعليمي؟ اضغط هنا

The strange side of LHCb

46   0   0.0 ( 0 )
 نشر من قبل Diego Guadagnoli
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide general effective-theory arguments relating present-day discrepancies in semi-leptonic $B$-meson decays to signals in kaon physics, in particular lepton-flavour violating ones of the kind $K to (pi) e^pm mu^mp$. We show that $K$-decay branching ratios of around $10^{-12} - 10^{-13}$ are possible, for effective-theory cutoffs around $5-15$ TeV compatible with discrepancies in $Bto K^{(ast)} mumu$ decays. We perform a feasibility study of the reach for such decays at LHCb, taking $K^+ to pi^+ mu^pm e^mp$ as a benchmark. In spite of the long lifetime of the $K^+$ compared to the detector size, the huge statistics anticipated as well as the overall detector performance translate into encouraging results. These include the possibility to reach the $10^{-12}$ ballpark, and thereby significantly improve current limits. Our results advocate LHCs high-luminosity Upgrade phase, and support analogous sensitivity studies at other facilities. Given the performance uncertainties inherent in the Upgrade phase, our conclusions are based on a range of assumptions we deem realistic on the particle identification performance as well as on the kinematic reconstruction thresholds for the signal candidates.



قيم البحث

اقرأ أيضاً

This report details the capabilities of LHCb and its upgrades towards the study of kaons and hyperons. The analyses performed so far are reviewed, elaborating on the prospects for some key decay channels, while proposing some new measurements in LHCb to expand its strangeness research program.
In this paper we describe the history of the LHCb experiment over the last three decades, and its remarkable successes and achievements. LHCb was conceived primarily as a b-physics experiment, dedicated to CP violation studies and measurements of ver y rare b decays, however the tremendous potential for c-physics was also clear. At first data taking, the versatility of the experiment as a general-purpose detector in the forward region also became evident, with measurements achievable such as electroweak physics, jets and new particle searches in open states. These were facilitated by the excellent capability of the detector to identify muons and to reconstruct decay vertices close to the primary pp interaction region. By the end of the LHC Run 2 in 2018, before the accelerator paused for its second long shut down, LHCb had measured the CKM quark mixing matrix elements and CP violation parameters to world-leading precision in the heavy-quark systems. The experiment had also measured many rare decays of b and c quark mesons and baryons to below their Standard Model expectations, some down to branching ratios of order 10-9. In addition, world knowledge of b and c spectroscopy had improved significantly through discoveries of many new resonances already anticipated in the quark model, and also adding new exotic four and five quark states.
We study the potential of the LHCb experiment to discover, for the first time, the $mu^+mu^-$ true muonium bound state. We propose a search for the vector $1^3S_1$ state, $mathcal{T!M}$, which kinetically mixes with the photon and dominantly decays t o $e^+e^-$. We demonstrate that a search for $eta to gamma mathcal{T!M}$, $mathcal{T!M}to e^+e^-$ in a displaced vertex can exceed a significance of 5 standard deviations assuming statistical uncertainties. We present two possible searches: an inclusive search for the $e^+e^-$ vertex, and an exclusive search which requires an additional photon and a reconstruction of the $eta$ mass.
In the presence of non-standard neutrino interactions (NSI), oscillation data are affected by a degeneracy which allows the solar mixing angle to be in the second octant (aka the dark side) and implies a sign flip of the atmospheric mass-squared diff erence. This leads to an ambiguity in the determination of the ordering of neutrino masses, one of the main goals of the current and future experimental neutrino program. We show that the recent observation of coherent neutrino--nucleus scattering by the COHERENT experiment, in combination with global oscillation data, excludes the NSI degeneracy at the $3.1sigma$ ($3.6sigma$) CL for NSI with up (down) quarks.
62 - Xiaohui Liu , Hongxi Xing 2021
We re-examine the jet probes of the nucleon spin and flavor structures. We find for the first time the time-reversal odd (T-odd) component of a jet, conventionally thought to vanish, can survive due to the non-perturbative fragmentation and hadroniza tion effects and could be testable. This additional contribution of a jet will lead to novel jet phenomena relevant for unlocking the access to several spin structures of the nucleon, which were thought to be impossible by using jets. As examples, we show how the T-odd constituent can couple to the proton transversity at the Electron Ion Collider (EIC) and can give rise to the anisotropy in the jet production in $e^+e^-$ annihilations. We expect the T-odd contribution of the jet to have broad applications in high energy nuclear physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا