ﻻ يوجد ملخص باللغة العربية
In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts to recover the phase information of a signal from the magnitude of its Fourier transform to enable the reconstruction of the original signal. Solving the phase retrieval problem is equivalent to recovering a signal from its auto-correlation function. In this paper, we assume the original signal to be sparse; this is a natural assumption in many applications, such as X-ray crystallography, speckle imaging and blind channel estimation. We propose an algorithm that resolves the phase retrieval problem in three stages: i) we leverage the finite rate of innovation sampling theory to super-resolve the auto-correlation function from a limited number of samples, ii) we design a greedy algorithm that identifies the locations of a sparse solution given the super-resolved auto-correlation function, iii) we recover the amplitudes of the atoms given their locations and the measured auto-correlation function. Unlike traditional approaches that recover a discrete approximation of the underlying signal, our algorithm estimates the signal on a continuous domain, which makes it the first of its kind. Along with the algorithm, we derive its performance bound with a theoretical analysis and propose a set of enhancements to improve its computational complexity and noise resilience. Finally, we demonstrate the benefits of the proposed method via a comparison against Charge Flipping, a notable algorithm in crystallography.
In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts the recovery of the phase information of a signal from the magnitud
We consider the phase retrieval problem for signals that belong to a union of subspaces. We assume that amplitude measurements of the signal of length $n$ are observed after passing it through a random $m times n$ measurement matrix. We also assume t
We consider the problem of testing for the presence (or detection) of an unknown sparse signal in additive white noise. Given a fixed measurement budget, much smaller than the dimension of the signal, we consider the general problem of designing comp
In recent years, the mathematical and algorithmic aspects of the phase retrieval problem have received considerable attention. Many papers in this area mention crystallography as a principal application. In crystallography, the signal to be recovered
The Random Demodulator (RD) and the Modulated Wideband Converter (MWC) are two recently proposed compressed sensing (CS) techniques for the acquisition of continuous-time spectrally-sparse signals. They extend the standard CS paradigm from sampling d