ﻻ يوجد ملخص باللغة العربية
In this paper, we show that in the vicinity of certain astronomical bodies, e.g., a Neutron Star, a Black Hole, there exist significant enhancements of Dark Matters density and current, due to its interaction with the gravitational field of the bodies. This enhancement implies that the effects of Dark Matter - Normal Matter interactions are enhanced and hence might be observable.
Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that D
We derive the non-relativistic limit of a massive vector field. We show that the Cartesian spatial components of the vector behave as three identical, non-interacting scalar fields. We find classes of spherical, cylindrical, and planar self-gravitati
In our current best cosmological model, the vast majority of matter in the Universe is dark, consisting of yet undetected, non-baryonic particles that do not interact electro-magnetically. So far, the only significant evidence for dark matter has bee
A new family of nonrelativistic, Newtonian, non-quantum equilibrium configurations describing galactic halos is introduced, by considering strange quark matter conglomerates with masses larger than about 8 GeV as new possible components of the dark m
Gravitating bodies significantly alter the flow pattern (density and velocity) of the gas that attempts to stream past. Still, small protoplanets in the Mars--super-Earth range can only bind limited amounts of nebular gas; until the so-called critica