ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Hall Conductivity in Superconducting Phase on Kagome Lattice

145   0   0.0 ( 0 )
 نشر من قبل Shoma Iimura
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by a previous $sd^2$-graphene study, the pairing symmetry in the superconducting state and the thermal Hall conductivity are investigated by a self-consistent Bogoliubov--de Gennes approach on the kagome lattice with intrinsic spin-orbit coupling near van Hove fillings. While the topologically trivial state with broken time-reversal symmetry appears in the absence of spin-orbit coupling, the highest flat band becomes dispersive with a hexagonal symmetry due to spin-orbit coupling, which leads to a topological superconducting state. Since the thermal Hall conductivity in the low-temperature limit is associated with the topological property of time-reversal symmetry breaking superconductors, we study its temperature dependence near van Hove fillings. In particular, the pairing symmetry in the highest flat band is sensitive to the amplitudes of spin-orbit coupling and the attractive interaction, which is reflected remarkably in the thermal Hall conductivity. The obtained result may enable us to investigate the stable superconducting state on the kagome lattice.



قيم البحث

اقرأ أيضاً

The nature of the pseudogap phase of cuprates remains a major puzzle. Although there are indications that this phase breaks various symmetries, there is no consensus on its fundamental nature. Although Fermi-surface, transport and thermodynamic signa tures of the pseudogap phase are reminiscent of a transition into a phase with antiferromagnetic order, there is no evidence for an associated long-range magnetic order. Here we report measurements of the thermal Hall conductivity $kappa_{rm xy}$ in the normal state of four different cuprates (Nd-LSCO, Eu-LSCO, LSCO, and Bi2201) and show that a large negative $kappa_{rm xy}$ signal is a property of the pseudogap phase, appearing with the onset of that phase at the critical doping $p^*$. Since it is not due to charge carriers -- as it persists when the material becomes an insulator, at low doping -- or magnons -- as it exists in the absence of magnetic order -- or phonons -- since skew scattering is very weak, we attribute this $kappa_{rm xy}$ signal to exotic neutral excitations, presumably with spin chirality. The thermal Hall conductivity in the pseudogap phase of cuprates is reminiscent of that found in insulators with spin-liquid states. In the Mott insulator LCO, it attains the highest known magnitude of any insulator.
There is growing evidence that the superconducting semimetal FeSe ($T_csim8$ K) is in the crossover regime between weak-coupling Bardeen-Cooper-Schrieffer (BCS) and strong-coupling Bose-Einstein-condensate (BEC) limits. We report on longitudinal and transverse thermal conductivities, $kappa_{xx}$ and $kappa_{xy}$, respectively, in magnetic fields up to 20 T. The field dependences of $kappa_{xx}$ and $kappa_{xy}$ imply that a highly anisotropic small superconducting gap forms at the electron Fermi-surface pocket whereas a more isotropic and larger gap forms at the hole pocket. Below $sim1.0$ K, both $kappa_{xx}$ and $kappa_{xy}$ exhibit distinct anomalies (kinks) at the upper critical field $H_{c2}$ and at a field $H^*$ slightly below $H_{c2}$. The analysis of the thermal Hall angle ($kappa_{xy}/kappa_{xx}$) indicates a change of the quasiparticle scattering rate at $H^*$. These results provide strong support to the previous suggestion that above $H^*$ a distinct field-induced superconducting phase emerges with an unprecedented large spin imbalance.
The thermal conductivity of organic superconductor kappa-(BEDT-TTF)2Cu(NCS)2 (Tc =10.4 K) has been studied in a magnetic field rotating within the 2D superconducting planes with high alignment precision. At low temperatures (T < 0.5 K), a clear fourf old symmetry in the angular variation, which is characteristic of a d-wave superconducting gap with nodes along the directions rotated 45 degrees relative to the b and c axes of the crystal, was resolved. The determined nodal structure is inconsistent with recent theoretical predictions of superconductivity induced by the antiferromagnetic spin fluctuation.
A clear thermal Hall signal ($kappa_{xy}$) was observed in the spin liquid phase of the $S=1/2$ kagome antiferromagnet Ca kapellasite (CaCu$_3$(OH)$_6$Cl$_2cdot 0.6$H$_2$O). We found that $kappa_{xy}$ is well reproduced, both qualitatively and quanti tatively, using the Schwinger-boson mean-field theory with the Dzyaloshinskii--Moriya interaction of $D/J sim 0.1$. In particular, $kappa_{xy}$ values of Ca kapellasite and those of another kagome antiferromagnet, volborthite, converge to one single curve in simulations modeled using Schwinger bosons, indicating a common temperature dependence of $kappa_{xy}$ for the spins of a kagome antiferromagnet.
237 - S. Y. Zhou , X. C. Hong , X. Qiu 2012
The thermal conductivity of optimally doped NaFe$_{0.972}$Co$_{0.028}$As ($T_c sim$ 20 K) and overdoped NaFe$_{0.925}$Co$_{0.075}$As ($T_c sim$ 11 K) single crystals were measured down to 50 mK. No residual linear term $kappa_0/T$ is found in zero ma gnetic field for both compounds, which is an evidence for nodeless superconducting gap. Applying field up to $H$ = 9 T ($approx H_{c2}/4$) does not noticeably increase $kappa_0/T$ in NaFe$_{1.972}$Co$_{0.028}$As, which is consistent with multiple isotropic gaps with similar magnitudes. The $kappa_0/T$ of overdoped NaFe$_{1.925}$Co$_{0.075}$As shows a relatively faster field dependence, indicating the increase of the ratio between the magnitudes of different gaps, or the enhancement of gap anisotropy upon increasing doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا