ﻻ يوجد ملخص باللغة العربية
Human pose estimation is an important topic in computer vision with many applications including gesture and activity recognition. However, pose estimation from image is challenging due to appearance variations, occlusions, clutter background, and complex activities. To alleviate these problems, we develop a robust pose estimation method based on the recent deep conv-deconv modules with two improvements: (1) multi-scale supervision of body keypoints, and (2) a global regression to improve structural consistency of keypoints. We refine keypoint detection heatmaps using layer-wise multi-scale supervision to better capture local contexts. Pose inference via keypoint association is optimized globally using a regression network at the end. Our method can effectively disambiguate keypoint matches in close proximity including the mismatch of left-right body parts, and better infer occluded parts. Experimental results show that our method achieves competitive performance among state-of-the-art methods on the MPII and FLIC datasets.
We develop a robust multi-scale structure-aware neural network for human pose estimation. This method improves the recent deep conv-deconv hourglass models with four key improvements: (1) multi-scale supervision to strengthen contextual feature learn
Like many computer vision problems, human pose estimation is a challenging problem in that recognizing a body part requires not only information from local area but also from areas with large spatial distance. In order to spatially pass information,
Multi-frame human pose estimation in complicated situations is challenging. Although state-of-the-art human joints detectors have demonstrated remarkable results for static images, their performances come short when we apply these models to video seq
Although monocular 3D human pose estimation methods have made significant progress, its far from being solved due to the inherent depth ambiguity. Instead, exploiting multi-view information is a practical way to achieve absolute 3D human pose estimat
The best performing methods for 3D human pose estimation from monocular images require large amounts of in-the-wild 2D and controlled 3D pose annotated datasets which are costly and require sophisticated systems to acquire. To reduce this annotation