ﻻ يوجد ملخص باللغة العربية
The Bialynicki-Birula decomposition of the space of lambda-connections restricts to the Morse stratification on the moduli space of Higgs bundles and to the partial oper stratification on the de Rham moduli space of holomorphic connections. For both the Morse and partial oper stratifications, every stratum is a holomorphic Lagrangian fibration over a component of the space of complex variations of Hodge structure. In this paper, we generalize known results for the Hitchin section and the space of opers to arbitrary strata. These include the following: a biholomorphic identification of the fibers of the two strata over a stable variation of Hodge structure via the h-bar-conformal limit of Gaiotto, a proof that the fibers of the Morse and partial oper stratifications are transverse at the base point, and an explicit parametrization of the fibers as half-dimensional affine spaces.
The aim of this paper is to introduce a cosymplectic analouge of conformal connection in a cosymplectic manifold and proved that if cosymplectic manifold M admits a cosymplectic conformal connection which is of zero curvature, then the Bochner curvature tensor of M vanishes.
We shall give a twisted Dirac structure on the space of irreducible connections on a SU(n)-bundle over a three-manifold, and give a family of twisted Dirac structures on the space of irreducible connections on the trivial SU(n)-bundle over a four-man
In the spirit of recent work of Lamm, Malchiodi and Micallef in the setting of harmonic maps, we identify Yang-Mills connections obtained by approximations with respect to the Yang-Mills {alpha}-energy. More specifically, we show that for the SU(2) H
We introduce a symplectic structure on the space of connections in a G-principal bundle over a four-manifold and the Hamiltonian action on it of the group of gauge transformations which are trivial on the boundary. The symplectic reduction becomes th
We consider geometries on the space of Riemannian metrics conformally equivalent to the widely studied Ebin L^2 metric. Among these we characterize a distinguished metric that can be regarded as a generalization of Calabis metric on the space of Kahl