ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling the entropic uncertainty lower bound in two-qubit systems under the decoherence

63   0   0.0 ( 0 )
 نشر من قبل Soroush Haseli
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The uncertainty principle is an inherent characteristic of quantum mechanics. This principle can be formulated in various form. Fundamentally, this principle can be expressed in terms of the standard deviation of the measured observables. In quantum information theory the preferred mathematical quantity to express the entropic uncertainty relation is the Shannons entropy. In this work, we consider the generalized entropic uncertainty relation in which there is an additional particle as a quantum memory. Alice measures on her particle $A$ and Bob, with memory particle $B$, predicts the Alices measurement outcomes. We study the effects of the environment on the entropic uncertainty lower bound in the presence of weak measurement and measurement reversal. The dynamical model that is intended in this work is as follows: First the weak measurement is performed, Second the decoherence affects on the system and at last the measurement reversal is performed on quantum system . Here we consider the generalized amplitude damping channel and depolarizing channel as environmental noises. We will show that in the presence of weak measurement and measurement reversal, despite the presence of environmental factors, the entropic uncertainty lower bound dropped to an optimal minimum value. In fact, weak measurement and measurement reversal enhance the quantum correlation between the subsystems $A$ and $B$ thus the uncertainty of Bob about Alices measurement outcomes reduces.



قيم البحث

اقرأ أيضاً

57 - S. Haseli , F. Ahmadi 2018
The uncertainty principle is the most important feature of quantum mechanics, which can be called the heart of quantum mechanics. This principle sets a lower bound on the uncertainties of two incompatible measurement. In quantum information theory, t his principle is expressed in terms of entropic measures. Entropic uncertainty bound can be altered by considering a particle as a quantum memory. In this work we investigate the entropic uncertainty relation under the relativistic motion. In relativistic uncertainty game Alice and Bob agree on two observables, $hat{Q}$ and $hat{R}$, Bob prepares a particle constructed from the free fermionic mode in the quantum state and sends it to Alice, after sending, Bob begins to move with an acceleration $a$, then Alice does a measurement on her particle $A$ and announces her choice to Bob, whose task is then to minimize the uncertainty about the measurement outcomes. we will have an inevitable increase in the uncertainty of the Alics measurement outcome due to information loss which was stored initially in B. In this work we look at the Unruh effect as a quantum noise and we will characterize it as a quantum channel.
70 - S. Haseli , F. Ahmadi 2019
The uncertainty principle is an important principle in quantum theory. Based on this principle, it is impossible to predict the measurement outcomes of two incompatible observables, simultaneously. Uncertainty principle basically is expressed in term s of the standard deviation of the measured observables. In quantum information theory, it is shown that the uncertainty principle can be expressed by Shannons entropy. The entopic uncertainty lower bound can be altered by considering a particle as the quantum memory which is correlated with the measured particle. We assume that the quantum memory is an open system. We also select the quantum memory from $N$ qubit which interact with common reservoir. In this work we investigate the effects of the number of additional qubits in reservoir on entropic uncertainty lower bound. We conclude that the entropic uncertainty lower bound can be protected from decoherence by increasing the number of additional qubit in reservoir.
114 - F. Adabi , S. Haseli , S. Salimi 2016
The uncertainty principle sets lower bound on the uncertainties of two incompatible observables measured on a particle. The uncertainty lower bound can be reduced by considering a particle as a quantum memory entangled with the measured particle. In this paper, we consider a tripartite scenario in which a quantum state has been shared between Alice, Bob, and Charlie. The aim of Bob and Charlie is to minimize Charlies lower bound about Alices measurement outcomes. To this aim, they concentrate their correlation with Alice in Charlies side via a cooperative strategy based on local operations and classical communication. We obtain lower bound for Charlies uncertainty about Alices measurement outcomes after concentrating information and compare it with the lower bound without concentrating information in some examples. We also provide a physical interpretation of the entropic uncertainty lower bound based on the dense coding capacity.
64 - F. Adabi , S. Salimi , S. Haseli 2016
The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables can not be predicted simultaneously. In quantum information theory, this principle can be expressed in t erms of entropic measures. Berta emph{et al}. [href{http://www.nature.com/doifinder/10.1038/nphys1734}{ Nature Phys. 6, 659 (2010) }] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on Holevo quantity and mutual information. We conclude that our lower bound will be tighten with respect to that of Berta emph{et al.}, when the accessible information about measurements outcomes is less than the mutual information of the joint state. Some examples have been investigated for which our lower bound is tighter than the Bertas emph{et al.} lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has obtained, as well as an upper bound for the regularized distillable common randomness.
We study the dynamics of four-qubit W state under various noisy environments by solving analytically the master equation in the Lindblad form in which the Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Als o, we investigate the dynamics of the entanglement using the lower bound to the concurrence. It is found that while the entanglement decreases monotonically for Pauli-Z noise, it decays suddenly for other three noises. Moreover, by studying the time evolution of entanglement of various maximally entangled four-qubit states, we indicate that the four-qubit W state is more robust under same-axis Pauli channels. Furthermore, three-qubit W state preserves more entanglement with respect to the four-qubit W state, except for the Pauli-Z noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا