ﻻ يوجد ملخص باللغة العربية
We present AC and DC magnetometry, heat capacity, muon spin relaxation ($mu$SR) and resonant inelastic X-ray scattering (RIXS) studies of the pyrochlore osmate Y$_2$Os$_2$O$_7$. We observe a non-zero effective moment governed by $sqrt{f}mu_{rm{eff}} = 0.417(1),mu_{rm{B}}$ where $f$ is the fraction of Os sites which exhibit a spin, and spin freezing at temperature $T_{rm f} simeq 5,$K, consistent with previous results. The field dependence of magnetisation data shows that the paramagnetic moment is most likely due to large moments $mu_{rm eff} simeq 3,mu_{rm B}$ on only a small fraction $f simeq 0.02$ of Os sites. Comparison of single-ion energy level calculations with the RIXS data yields a non-magnetic $J_{rm eff} = 0$ ground state on the Os$^{4+}$ sites. The spin-orbit interaction, Hunds coupling and trigonal distortion of OsO$_{6}$ octahedra are all important in modelling the experimentally observed spectra. We are able to rule out impurity effects, leaving disorder-related effects such as oxygen non-stoichiometry or site interchange between Os and Y ions as the most plausible explanation for the magnetic response in this material.
Polycrystalline samples of NaYbO$_2$ are investigated by bulk magnetization and specific-heat measurements, as well as by nuclear magnetic resonance (NMR) and electron spin resonance (ESR) as local probes. No signatures of long-range magnetic order a
We investigate the ultrafast dynamics of Cd$_2$Os$_2$O$_7$, a prototype material showing a Lifshitz-type transition as a function of temperature. In the paramagnetic metallic state, the photo-reflectivity shows a sub-picosecond relaxation, followed b
The pyrochlore oxides Dy$_{2}$Ti$_{2}$O$_{7}$ and Ho$_{2}$Ti$_{2}$O$_{7}$ are well studied spin ice systems and have shown the evidences of magnetic monopole excitations. Unlike these, Dy$_{2}$Zr$_{2}$O$_{7}$ is reported to crystallize in a distorted
Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er$_{2}$Ge$_{2}$O$_{7}$ and Yb$_{2}$Ge$_{2}$O$_{7}$ show that both systems are antiferromagnetically ordered in the $Gamma_5$ manifold. The ground state i
Transition metal oxides exhibit various competing phases and exotic phenomena depending on how their reaction to the rich degeneracy of the $d$-orbital. Large spin-orbit coupling (SOC) reduces this degeneracy in a unique way by providing a spin-orbit