ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonance Raman spectroscopy of silicene and germanene

66   0   0.0 ( 0 )
 نشر من قبل Gerg\\H{o} Kukucska
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model Raman processes in silicene and germanene involving scattering of quasiparticles by, either, two phonons, or, one phonon and one point defect. We compute the resonance Raman intensities and lifetimes for laser excitations between 1 and 3$,$eV using a newly developed third-nearest neighbour tight-binding model parametrized from first principles density functional theory. We identify features in the Raman spectra that are unique to the studied materials or the defects therein. We find that in silicene, a new Raman resonance arises from the $2.77,rm$eV $pi-sigma$ plasmon at the M point, measurably higher than the Raman resonance originating from the $2.12,rm$eV $pi$ plasmon energy. We show that in germanene, the lifetimes of charge carriers, and thereby the linewidths of the Raman peaks, are influenced by spin-orbit splittings within the electronic structure. We use our model to predict scattering cross sections for defect induced Raman scattering involving adatoms, substitutional impurities, Stone-Wales pairs, and vacancies, and argue that the presence of each of these defects in silicene and germanene can be qualitatively matched to specific features in the Raman response.



قيم البحث

اقرأ أيضاً

227 - M. X. Chen , Z. Zhong , M. Weinert 2015
We propose a guideline for exploring substrates that stabilize the monolayer honeycomb structure of silicene and germanene while simultaneously preserve the Dirac states: in addition to have a strong binding energy to the monolayer, a suitable substr ate should be a large-gap semiconductor with a proper workfunction such that the Dirac point lies in the gap and far from the substrate states when their bands align. We illustrate our idea by performing first-principles calculations for silicene and germanene on the Al-terminated (0001) surface of Al2O3 . The overlaid monolayers on Al-terminated Al2O3(0001) retain the main structural profile of the low-buckled honeycomb structure via a binding energy comparable to the one between silicene and Ag(111). Unfolded band structure derived from the k-projection method reveals that gapped Dirac cone is formed at the K point due to the structural distortion and the interaction with the substrate. The gaps of 0.4 eV and 0.3 eV respectively for the supported silicene and germanene suggest that they may have potential applications in nanoelectronics.
Using a gold (111) surface as a substrate we have grown in situ by molecular beam epitaxy an atom-thin, ordered, two-dimensional multi-phase film. Its growth bears strong similarity with the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in Scanning Tunneling Microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced Density Functional Theory calculations we can identify it to a $sqrt{3}$x$sqrt{3}$R(30{deg}) germanene layer in coincidence with a $sqrt{7}$x$sqrt{7}$R(19.1{deg}) Au(111) supercell, thence, presenting the first compelling evidence of the birth of a novel synthetic germanium-based cousin of graphene.
Based on first-principles calculation using density functional theory, we study the vibrational properties and thermal expansion of mono-atomic two-dimensional honeycomb lattices: graphene, silicene, germanene and blue phosphorene. We focus on the si milarities and differences of their properties, and try to understand them from their lattice structures. We illustrate that, from graphene to blue phosphorene, phonon bandgap develops due to large buckling-induced mixing of the in-plane and out-of-plane phonon modes. This mixing also influences their thermal properties. Using quasi-harmonic approximation, we find that all of them show negative thermal expansion at room temperature.
The two-dimensional silicon allotrope, silicene, could spur the development of new and original concepts in Si-based nanotechnology. Up to now silicene can only be epitaxially synthesized on a supporting substrate such as Ag(111). Even though the str uctural and electronic properties of these epitaxial silicene layers have been intensively studied, very little is known about its vibrational characteristics. Here, we present a detailed study of epitaxial silicene on Ag(111) using textit{in situ} Raman spectroscopy, which is one of the most extensively employed experimental techniques to characterize 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous. The vibrational fingerprint of epitaxial silicene, in contrast to all previous interpretations, is characterized by three distinct phonon modes with A and E symmetries. The temperature dependent spectral evolution of these modes demonstrates unique thermal properties of epitaxial silicene and a significant electron-phonon coupling. These results unambiguously support the purely two-dimensional character of epitaxial silicene up to about $300^{circ}C$, whereupon a 2D-to-3D phase transition takes place.
The thermoelectric properties in one- and two-dimensional silicon and germanium structures have been investigated using first-principle density functional techniques and linear response for the thermal and electrical transport. We have considered her e the two-dimensional silicene and germanene, together with nano-ribbons of different widths. For the nano-ribbons, we have also investigated the possibility of nano-structuring these systems by mixing silicon and germanium. We found that the figure of merit at room temperature of these systems is remarkably high, up to 2.5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا