ﻻ يوجد ملخص باللغة العربية
We develop new methods to study tropicalizations of linear series and show linear independence of sections. Using these methods, we prove two new cases of the strong maximal rank conjecture for linear series of degree 25 and 26 on curves of genus 22 and 23, respectively.
We produce new combinatorial methods for approaching the tropical maximal rank conjecture, including inductive procedures for deducing new cases of the conjecture on graphs of increasing genus from any given case. Using explicit calculations in a ran
We prove that the moduli spaces of curves of genus 22 and 23 are of general type. To do this, we calculate certain virtual divisor classes of small slope associated to linear series of rank 6 with quadric relations. We then develop new tropical metho
Fix integers $r,s_1,...,s_l$ such that $1leq lleq r-1$ and $s_lgeq r-l+1$, and let $Cal C(r;s_1,...,s_l)$ be the set of all integral, projective and nondegenerate curves $C$ of degree $s_1$ in the projective space $bold P^r$, such that, for all $i=2,
We prove that a Shimura curve in the Siegel modular variety is not generically contained in the open Torelli locus as long as the rank of unitary part in its canonical Higgs bundle satisfies a numerical upper bound. As an application we show that the
We make a first geometric study of three varieties in $mathbb{C}^m otimes mathbb{C}^m otimes mathbb{C}^m$ (for each $m$), including the Zariski closure of the set of tight tensors, the tensors with continuous regular symmetry. Our motivation is to de