Covariance Matrix Estimation from Linearly-Correlated Gaussian Samples


الملخص بالإنكليزية

Covariance matrix estimation concerns the problem of estimating the covariance matrix from a collection of samples, which is of extreme importance in many applications. Classical results have shown that $O(n)$ samples are sufficient to accurately estimate the covariance matrix from $n$-dimensional independent Gaussian samples. However, in many practical applications, the received signal samples might be correlated, which makes the classical analysis inapplicable. In this paper, we develop a non-asymptotic analysis for the covariance matrix estimation from correlated Gaussian samples. Our theoretical results show that the error bounds are determined by the signal dimension $n$, the sample size $m$, and the shape parameter of the distribution of the correlated sample covariance matrix. Particularly, when the shape parameter is a class of Toeplitz matrices (which is of great practical interest), $O(n)$ samples are also sufficient to faithfully estimate the covariance matrix from correlated samples. Simulations are provided to verify the correctness of the theoretical results.

تحميل البحث