ﻻ يوجد ملخص باللغة العربية
With the tremendous advances of the wireless devices technology, securing wireless sensor networks became more and more a vital but also a challenging task. In this paper we propose an integrated strategy that is meant to discover malicious nodes within a sensor network and to expel them from the network using a node self-destruction procedure. Basically, we will compare every sensor reading with its estimated values provided by two predictors: an autoregressive predictor [1] that uses past values provided by the sensor under investigation and a neural predictor that uses past values provided by adjacent nodes. In case the absolute difference between the measured and the estimated values are greater then a chosen threshold, the sensor node becomes suspicious and a decision block is activated. If this block decides that the node is malicious, a self-destruction procedure will be started.
In past years there has been increasing interest in field of Wireless Sensor Networks (WSNs). One of the major issue of WSNs is development of energy efficient routing protocols. Clustering is an effective way to increase energy efficiency. Mostly, h
An energy cooperation policy for energy harvesting wireless sensor networks (WSNs) with wireless power transfer is proposed in this paper to balance the energy at each sensor node and increase the total energy utilization ratio of the whole WSNs. Con
Congestion control and avoidance in Wireless Sensor Networks (WSNs) is a subject that has attracted a lot of research attention in the last decade. Besides rate and resource control, the utilization of mobile nodes has also been suggested as a way to
We investigate the condition on transmission radius needed to achieve connectivity in duty-cycled wireless sensor networks (briefly, DC-WSN). First, we settle a conjecture of Das et. al. (2012) and prove that the connectivity condition on Random Geom
We study a wireless ad-hoc sensor network (WASN) where $N$ sensors gather data from the surrounding environment and transmit their sensed information to $M$ fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is f