Isothermal Bondi accretion in two-component Jaffe galaxies with a central black hole


الملخص بالإنكليزية

The fully analytical solution for isothermal Bondi accretion on a black hole (MBH) at the center of two-component Jaffe (1983) galaxy models is presented. In a previous work we provided the analytical expressions for the critical accretion parameter and the radial profile of the Mach number in the case of accretion on a MBH at the center of a spherically symmetric one-component Jaffe galaxy model. Here we apply this solution to galaxy models where both the stellar and total mass density distributions are described by the Jaffe profile, with different scale-lengths and masses, and to which a central MBH is added. For such galaxy models all the relevant stellar dynamical properties can also be derived analytically (Ciotti & Ziaee Lorzad 2018). In these new models the hydrodynamical and stellar dynamical properties are linked by imposing that the gas temperature is proportional to the virial temperature of the galaxy stellar component. The formulae that are provided allow to evaluate all flow properties, and are then useful for estimates of the scale-radius and the mass flow rate when modeling accretion on massive black holes at the center of galaxies. As an application, we quantify the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the MBH, under the hypothesis of classical Bondi accretion.

تحميل البحث