ﻻ يوجد ملخص باللغة العربية
Herein, we present the 12CO (J=1-0) and 13CO (J=1-0) emission line observations via the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope (FUGIN) toward a Spitzer bubble N4. We observed clouds of three discrete velocities: 16, 19, and 25 km/s. Their masses were 0.1x10^4 Msun, 0.3x10^4 Msun, and 1.4x10^4 Msun, respectively. The distribution of the 25-km/s cloud likely traces the ring-like structure observed at mid-infrared wavelength. We could not find clear expanding motion of the molecular gas in N4. On the contrary, we found a bridge feature and a complementary distribution, which are discussed as observational signatures of a cloud-cloud collision, between the 16- and 25-km/s clouds. We proposed a possible scenario wherein the formation of a massive star in N4 was triggered by a collision between the two clouds; however whereas the 19-km/s cloud is possibly not a part of the interaction with N4. The time scale of collision is estimated to be 0.2-0.3 Myr, which is comparable to the estimated dynamical age of the HII region of ~0.4 Myr. In N4W, a star-forming clump located west of N4, we observed molecular outflows from young stellar objects and the observational signature of a cloud-cloud collision. Thus, we also proposed a possible scenario in which massive- or intermediate-mass star formation was triggered via a cloud-cloud collision in N4W.
W51A is one of the most active star-forming region in our Galaxy, which contains giant molecular clouds with a total mass of 10^6 Msun. The molecular clouds have multiple velocity components over ~20 km/s, and interactions between these components ha
RCW120 is a Galactic HII region having a beautiful ring shape bright in infrared. Our new CO J=1-0 and J=3-2 observations performed with the NANTEN2, Mopra, and ASTE telescopes have revealed that two molecular clouds with a velocity separation of 20k
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin
Understanding the mechanism of O star formation is one of the most important issues in current astrophysics. It is also an issue of keen interest how O stars affect their surroundings and trigger secondary star formation. An H,emissiontype{II} region
A sample of 1.3 mm continuum cores in the Dragon infrared dark cloud (also known as G28.37+0.07 or G28.34+0.06) is analyzed statistically. Based on their association with molecular outflows, the sample is divided into protostellar and starless cores.