ﻻ يوجد ملخص باللغة العربية
Cosmic sources of gamma-ray radiation in the GeV range are often characterized by violent variability, in particular this concerns blazars, gamma-ray bursts, and the pulsar wind nebula Crab. Such gamma-ray emission requires a very efficient particle acceleration mechanism. If the environment, in which such emission is produced, is relativistically magnetized (i.e., that magnetic energy density dominates even the rest-mass energy density of matter), then the most natural mechanism of energy dissipation and particle acceleration is relativistic magnetic reconnection. Basic research into this mechanism is performed by means of kinetic numerical simulations of various configurations of collisionless relativistic plasma with the use of the particle-in-cell algorithm. Such technique allows to investigate the details of particle acceleration mechanism, including radiative energy losses, and to calculate the temporal, spatial, spectral and angular distributions of synchrotron and inverse Compton radiation. The results of these simulations indicate that the effective variability time scale of the observed radiation can be much shorter than the light-crossing time scale of the simulated domain.
Rapid gamma-ray flares pose an astrophysical puzzle, requiring mechanisms both to accelerate energetic particles and to produce fast observed variability. These dual requirements may be satisfied by collisionless relativistic magnetic reconnection. O
The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but brigh
We develop a model of particle acceleration in explosive reconnection events in relativistic magnetically-dominated plasmas and apply it to explain gamma-ray flares from the Crab Nebula. The model relies on development of current-driven instabilities
We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in highly-magnetized relativistic plasma. We first discuss physical parameters of the Crab nebula and review the theory of pulsar winds and term
Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream m