Using weak values amplification angular resolution limits, we theoretically investigate the gravitational sensing of objects. By inserting a force-sensing pendulum into a weak values interferometer, the optical response can sense accelerations to a few 10s of $mathrm{zepto}text{-}mathrm{g}/sqrt{mathrm{Hz}}$, with optical powers of $1~mathrm{mW}$. We convert this precision into range and mass sensitivity, focusing in detail on simple and torsion pendula. Various noise sources present are discussed, as well as the necessary cooling that should be applied to reach the desired levels of precision.