ﻻ يوجد ملخص باللغة العربية
Let $k$ be either a number a field or a function field over $mathbb{Q}$ with finitely many variables. We present a practical algorithm to compute the geometric Picard lattice of a K3 surface over $k$ of degree $2$, i.e., a double cover of the projective plane over $k$ ramified above a smooth sextic curve. The algorithm might not terminate, but if it terminates then it returns a proven correct answer.
We prove that the universal family of polarized K3 surfaces of degree 2 can be extended to a flat family of stable slc pairs $(X,epsilon R)$ over the toroidal compactification associated to the Coxeter fan. One-parameter degenerations of K3 surfaces
Using Gauss-Manin derivatives of normal functions, we arrive at some remarkable results on the non-triviality of the transcendental regulator for $K_m$ of a very general projective algebraic manifold. Our strongest results are for the transcendental
Let us consider the rank 14 lattice $P=D_4^3oplus < -2> oplus < 2>$. We define a K3 surface S of type P with the property that $Psubset {rm Pic}(S) $, where ${rm Pic}(S) $ indicates the Picard lattice of S. In this article we study the family of K3 s
Deligne showed that every K3 surface over an algebraically closed field of positive characteristic admits a lift to characteristic 0. We show the same is true for a twisted K3 surface. To do this, we study the versal deformation spaces of twisted K3
Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor recognizable if its flat limit on Kulikov surfaces is well defined. We prove