ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of the Milky Way spiral arms in dust from 3D mapping

86   0   0.0 ( 0 )
 نشر من قبل Sara Rezaei Kh.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large stellar surveys are sensitive to interstellar dust through the effects of reddening. Using extinctions measured from photometry and spectroscopy, together with three-dimensional (3D) positions of individual stars, it is possible to construct a three-dimensional dust map. We present the first continuous map of the dust distribution in the Galactic disk out to 7 kpc within 100 pc of the Galactic midplane, using red clump and giant stars from SDSS APOGEE DR14. We use a non-parametric method based on Gaussian Processes to map the dust density, which is the local property of the ISM rather than an integrated quantity. This method models the dust correlation between points in 3D space and can capture arbitrary variations, unconstrained by a pre-specified functional form. This produces a continuous map without line-of-sight artefacts. Our resulting map traces some features of the local Galactic spiral arms, even though the model contains no prior suggestion of spiral arms, nor any underlying model for the Galactic structure. This is the first time that such evident arm structures have been captured by a dust density map in the Milky Way. Our resulting map also traces some of the known giant molecular clouds in the Galaxy and puts some constraints on their distances, some of which were hitherto relatively uncertain.



قيم البحث

اقرأ أيضاً

Context. The physical processes driving the formation of Galactic spiral arms are still under debate. Studies using open clusters favour the description of the Milky Way spiral arms as long-lived structures following the classical density wave theory . Current studies comparing the Gaia DR2 field stars kinematic information of the Solar neighbourhood to simulations, find a better agreement with short-lived arms with a transient behaviour. Aims. Our aim is to provide an observational, data-driven view of the Milky Way spiral structure and its dynamics using open clusters as the main tracers, and to contrast it with simulation-based approaches. We use the most complete catalogue of Milky Way open clusters, with astrometric Gaia EDR3 updated parameters, estimated astrophysical information and radial velocities, to re-visit the nature of the spiral pattern of the Galaxy. Methods. We use a Gaussian mixture model to detect overdensities of open clusters younger than 30 Myr that correspond to the Perseus, Local, Sagittarius and Scutum spiral arms, respectively. We use the birthplaces of the open cluster population younger than 80 Myr to trace the evolution of the different spiral arms and compute their pattern speed. We analyse the age distribution of the open clusters across the spiral arms to explore the differences in the rotational velocity of stars and spiral arms. Results. We are able to increase the range in Galactic azimuth where present-day spiral arms are described, better estimating its parameters by adding 264 young open clusters to the 84 high-mass star-forming regions used so far, thus increasing by a 314% the number of tracers. We use the evolution of the open clusters from their birth positions to find that spiral arms nearly co-rotate with field stars at any given radius, discarding a common spiral pattern speed for the spiral arms explored. [abridged]
83 - Juntai Shen 2020
The Milky Way is a spiral galaxy with the Schechter characteristic luminosity $L_*$, thus an important anchor point of the Hubble sequence of all spiral galaxies. Yet the true appearance of the Milky Way has remained elusive for centuries. We review the current best understanding of the structure and kinematics of our home galaxy, and present an updated scientifically accurate visualization of the Milky Way structure with almost all components of the spiral arms, along with the COBE image in the solar perspective. The Milky Way contains a strong bar, four major spiral arms, and an additional arm segment (the Local arm) that may be longer than previously thought. The Galactic boxy bulge that we observe is mostly the peanut-shaped central bar viewed nearly end-on with a bar angle of 25-30 degrees from the Sun-Galactic center line. The bar transitions smoothly from a central peanut-shaped structure to an extended thin part that ends around R ~ 5 kpc. The Galactic bulge/bar contains ~ 30-40% of the total stellar mass in the Galaxy. Dynamical modelling of both the stellar and gas kinematics yields a bar pattern rotation speed of ~ 35-40 km/s/kpc, corresponding to a bar rotation period of ~ 160-180 Myr. From a galaxy formation point of view, our Milky Way is probably a pure-disk galaxy with little room for a significant merger-made, classical spheroidal bulge, and we give a number of reasons why this is the case.
RoadMapping is a dynamical modeling machinery developed to constrain the Milky Ways (MW) gravitational potential by simultaneously fitting an axisymmetric parametrized potential and an action-based orbit distribution function (DF) to discrete 6D phas e-space measurements of stars in the Galactic disk. In this work we demonstrate RoadMappings robustness in the presence of spiral arms by modeling data drawn from an N-body simulation snapshot of a disk-dominated galaxy of MW mass with strong spiral arms (but no bar), exploring survey volumes with radii 500pc<=r_max<=5kpc. The potential constraints are very robust, even though we use a simple action-based DF, the quasi-isothermal DF (qDF). The best-fit RoadMapping model always recovers the correct gravitational forces where most of the stars that entered the analysis are located, even for small volumes. For data from large survey volumes, RoadMapping finds axisymmetric models that average well over the spiral arms. Unsurprisingly, the models are slightly biased by the excess of stars in the spiral arms. Gravitational potential models derived from survey volumes with at least r_max=3kpc can be reliably extrapolated to larger volumes. However, a large radial survey extent, r_max~5kpc, is needed to correctly recover the halo scale length. In general, the recovery and extrapolability of potentials inferred from data sets which were drawn from inter-arm regions appear to be better than those of data sets drawn from spiral arms. Our analysis implies that building axisymmetric models for the Galaxy with upcoming Gaia data will lead to sensible and robust approximations of the MWs potential.
72 - Ye Xu , Mark Reid , Thomas Dame 2016
The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral str ucture in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxys major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms.
165 - D. Paradis , J.-Ph. Bernard , 2009
Dust properties appear to vary according to the environment in which the dust evolves. Previous observational indications of these variations in the FIR and submm spectral range are scarce and limited to specific regions of the sky. To determine whet her these results can be generalised to larger scales, we study the evolution in dust emissivities from the FIR to mm wavelengths, in the atomic and molecular ISM, along the Galactic plane towards the outer Galaxy. We correlate the dust FIR to mm emission with the HI and CO emission. The study is carried out using the DIRBE data from 100 to 240 mic, the Archeops data from 550 mic to 2.1 mm, and the WMAP data at 3.2 mm (W band), in regions with Galactic latitude |b| < 30 deg, over the Galactic longitude range (75 deg < l < 198 deg) observed with Archeops. In all regions studied, the emissivity spectra in both the atomic and molecular phases are steeper in the FIR (beta = 2.4) than in the submm and mm (beta = 1.5). We find significant variations in the spectral shape of the dust emissivity as a function of the dust temperature in the molecular phase. Regions of similar dust temperature in the molecular and atomic gas exhibit similar emissivity spectra. Regions where the dust is significantly colder in the molecular phase show a significant increase in emissivity for the range 100 - 550 mic. This result supports the hypothesis of grain coagulation in these regions, confirming results obtained over small fractions of the sky in previous studies and allowing us to expand these results to the cold molecular environments in general of the outer MW. We note that it is the first time that these effects have been demonstrated by direct measurement of the emissivity, while previous studies were based only on thermal arguments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا