ترغب بنشر مسار تعليمي؟ اضغط هنا

Epidemic Spreading and Aging in Temporal Networks with Memory

199   0   0.0 ( 0 )
 نشر من قبل Michele Tizzani
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-varying network topologies can deeply influence dynamical processes mediated by them. Memory effects in the pattern of interactions among individuals are also known to affect how diffusive and spreading phenomena take place. In this paper we analyze the combined effect of these two ingredients on epidemic dynamics on networks. We study the susceptible-infected-susceptible (SIS) and the susceptible-infected-removed (SIR) models on the recently introduced activity-driven networks with memory. By means of an activity-based mean-field approach we derive, in the long time limit, analytical predictions for the epidemic threshold as a function of the parameters describing the distribution of activities and the strength of the memory effects. Our results show that memory reduces the threshold, which is the same for SIS and SIR dynamics, therefore favouring epidemic spreading. The theoretical approach perfectly agrees with numerical simulations in the long time asymptotic regime. Strong aging effects are present in the preasymptotic regime and the epidemic threshold is deeply affected by the starting time of the epidemics. We discuss in detail the origin of the model-dependent preasymptotic corrections, whose understanding could potentially allow for epidemic control on correlated temporal networks.



قيم البحث

اقرأ أيضاً

Dynamic networks exhibit temporal patterns that vary across different time scales, all of which can potentially affect processes that take place on the network. However, most data-driven approaches used to model time-varying networks attempt to captu re only a single characteristic time scale in isolation --- typically associated with the short-time memory of a Markov chain or with long-time abrupt changes caused by external or systemic events. Here we propose a unified approach to model both aspects simultaneously, detecting short and long-time behaviors of temporal networks. We do so by developing an arbitrary-order mixed Markov model with change points, and using a nonparametric Bayesian formulation that allows the Markov order and the position of change points to be determined from data without overfitting. In addition, we evaluate the quality of the multiscale model in its capacity to reproduce the spreading of epidemics on the temporal network, and we show that describing multiple time scales simultaneously has a synergistic effect, where statistically significant features are uncovered that otherwise would remain hidden by treating each time scale independently.
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For a given social distancing individual strategies, we establish the epidemic reproduction number $R_0$ which can be used to identify network vulnerability and inform vaccination policies. In the second part of the paper we study the equilibrium of the social distancing game, in which individuals choose their social distancing level according to an anticipated global infection rate, which then must equal the actual infection rate following their choices. We give conditions for the existence and uniqueness of equilibrium. For the case of random regular graphs, we show that voluntary social distancing will always be socially sub-optimal.
85 - Saptarshi Sinha , Deep Nath , 2020
The detection and management of diseases become quite complicated when pathogens contain asymptomatic phenotypes amongst their ranks, as evident during the recent COVID-19 pandemic. Spreading of diseases has been studied extensively under the paradig m of Susceptible - Infected - Recovered - Deceased (SIRD) dynamics. Various game-theoretic approaches have also addressed disease spread, many of which consider S, I, R, and D as strategies rather than as states. Remarkably, most studies from the above approaches do not account for the distinction between the symptomatic or asymptomatic aspect of the disease. It is well-known that precautionary measures like washing hands, wearing masks and social distancing significantly mitigate the spread of many contagious diseases. Herein, we consider the adoption of such precautions as strategies and treat S, I, R, and D as states. We also attempt to capture the differences in epidemic spreading arising from symptomatic and asymptomatic diseases on various network topologies. Through extensive computer simulations, we examine that the cost of maintaining precautionary measures as well as the extent of mass testing in a population affects the final fraction of socially responsible individuals. We observe that the lack of mass testing could potentially lead to a pandemic in case of asymptomatic diseases. Network topology also seems to play an important role. We further observe that the final fraction of proactive individuals depends on the initial fraction of both infected as well as proactive individuals. Additionally, edge density can significantly influence the overall outcome. Our findings are in broad agreement with the lessons learnt from the ongoing COVID-19 pandemic.
We study SIS epidemic spreading processes unfolding on a recent generalisation of the activity-driven modelling framework. In this model of time-varying networks each node is described by two variables: activity and attractiveness. The first, describ es the propensity to form connections. The second, defines the propensity to attract them. We derive analytically the epidemic threshold considering the timescale driving the evolution of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed considering heterogeneous distributions and different correlations between the two variables. We find that heterogeneous distributions of attractiveness alter the contagion process. In particular, in case of uncorrelated and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented contribute to the understanding of the dynamical properties of time-varying networks and their effects on contagion phenomena unfolding on their fabric.
163 - Han-Xin Yang , Ming Tang , 2015
In spite of the extensive previous efforts on traffic dynamics and epidemic spreading in complex networks, the problem of traffic-driven epidemic spreading on {em correlated} networks has not been addressed. Interestingly, we find that the epidemic t hreshold, a fundamental quantity underlying the spreading dynamics, exhibits a non-monotonic behavior in that it can be minimized for some critical value of the assortativity coefficient, a parameter characterizing the network correlation. To understand this phenomenon, we use the degree-based mean-field theory to calculate the traffic-driven epidemic threshold for correlated networks. The theory predicts that the threshold is inversely proportional to the packet-generation rate and the largest eigenvalue of the betweenness matrix. We obtain consistency between theory and numerics. Our results may provide insights into the important problem of controlling/harnessing real-world epidemic spreading dynamics driven by traffic flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا