ﻻ يوجد ملخص باللغة العربية
CONTEXT. 2MASS is the reference survey in the NIR part of the spectrum given its whole-sky coverage, large dynamic range, and proven calibration uniformity. However, previous studies disagree in the value of the zero points (ZPs) for its three bands JHK at the hundredth of a magnitude level. The disagreement should become more noticeable now that Gaia provides whole-sky optical photometry calibrated below that level. AIMS. We want to establish the value of the 2MASS ZPs based on NICMOS/HST spectrophotometry of the CALSPEC standard stars and test it with the help of Gaia DR2 parallaxes. METHODS. We have computed the synthetic JHK photometry for a sample of stars using the HST CALSPEC spectroscopic standards and compared it with their 2MASS magnitudes to evaluate the ZPs. We have tested our results by analysing a sample of FGK dwarfs with excellent 2MASS photometry and accurate Gaia DR2 parallaxes.} RESULTS. The Vega ZPs for 2MASS J, H, and K are found to be -0.025$pm$0.005 mag, 0.004$pm$0.005 mag, and -0.015$pm$0.005 mag, respectively. The analysis of the FGK sample indicates that the new ZPs are more accurate than previous ones.
CONTEXT: The second Gaia data release (DR2) took place on April 2018. DR2 included photometry for more than 1.3 10^9 sources in G, BP, and RP. Even though Gaia DR2 photometry is very precise, there are currently three alternative definitions of the s
The second Gaia data release is based on 22 months of mission data with an average of 0.9 billion individual CCD observations per day. A data volume of this size and granularity requires a robust and reliable but still flexible system to achieve the
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the i
The source detection sensitivity of Gaia is reduced near sources. To characterise this contrast sensitivity is important for understanding the completeness of the Gaia data products, in particular when evaluating source confusion in less well resolve
Aims. The Radial Velocity Spectrometer (RVS) on board the ESA satellite mission Gaia has no calibration device. Therefore, the radial velocity zero point needs to be calibrated with stars that are proved to be stable at a level of 300 m/s during the