ﻻ يوجد ملخص باللغة العربية
With the advent of multi-core processors, network-on-chip design has been key in addressing network performances, such as bandwidth, power consumption, and communication delays when dealing with on-chip communication between the increasing number of processor cores. As the numbers of cores increase, network design becomes more complex. Therefore, there is a critical need in soliciting computer aid in determining network configurations that afford optimal performance given resources and design constraints. We propose a Pareto-optimization framework that explores the space of possible network configurations to determine optimal network latencies, power consumption, and the corresponding link allocations. For a given number of routers, average network latency and power consumption as example performance objectives can be displayed in form of Pareto-optimal fronts, thus not only offering a design tool, but also enabling trade-off studies.
Optical interconnect is a potential solution to attain the large bandwidth on-chip communications needed in high performance computers in a low power and low cost manner. Mode-division multiplexing (MDM) is an emerging technology that scales the capa
Optical Network-on-Chip (ONoC) is an emerging technology considered as one of the key solutions for future generation on-chip interconnects. However, silicon photonic devices in ONoC are highly sensitive to temperature variation, which leads to a low
Network Function Virtualization (NFV) can cost-efficiently provide network services by running different virtual network functions (VNFs) at different virtual machines (VMs) in a correct order. This can result in strong couplings between the decision
Wireless Sensor Networks (WSNs) is an emerging technology in several application domains, ranging from urban surveillance to environmental and structural monitoring. Computational Intelligence (CI) techniques are particularly suitable for enhancing t
Memristors have recently received significant attention as ubiquitous device-level components for building a novel generation of computing systems. These devices have many promising features, such as non-volatility, low power consumption, high densit