ﻻ يوجد ملخص باللغة العربية
The first LIGO-Virgo detections have confirmed the existence of massive black holes (BHs), with mass $30-40$ M$_odot$. Such BHs might originate from massive metal-poor stars ($Z<0.3$ Z$_odot$) or from gravitational instabilities in the early Universe. The formation channels of merging BHs are still poorly constrained. The measure of mass, spin and redshift distribution of merging BHs will give us fundamental clues to distinguish between different models. Also, a better understanding of several astrophysical processes (e.g. common envelope, core-collapse supernovae, and dynamical evolution of BHs) is decisive, to shed light on the formation channels of merging BHs.
We recently developed a procedure to recognize gamma-ray blazar candidates within the positional uncertainty regions of the unidentified/unassociated gamma-ray sources (UGSs). Such procedure was based on the discovery that Fermi blazars show peculiar
We derive the luminosity function and redshift distribution of short Gamma Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SG
Gravitational waves (GWs) are fluctuations in the fabric of spacetime predicted by Einsteins theory of general relativity. Using a collection of millisecond pulsars as high-precision clocks, the nanohertz band of this radiation is likely to be direct
Gravitational wave science is on the verge of direct observation of the waves predicted by Einsteins General Theory of Relativity and opening the exciting new field of gravitational wave astronomy. In the coming decades, ultra-sensitive arrays of gro
The focus of this Chapter is on describing the prospective sources of the gravitational wave universe accessible to present and future observations, from kHz, to mHz down to nano-Hz frequencies. The multi-frequency gravitational wave universe gives a