ﻻ يوجد ملخص باللغة العربية
We use state-of-the art GW-BSE formalism to study electronic structure and optical properties of oxygen vacancies in $alpha$-alumina. Many body perturbation theory within GW approximation in recent years have been used extensively to study excited state properties of a wide range of systems. Moreover, solving Bethe-Salpeter equation (BSE) enable us to capture excitonic effects in a material. We compute the charge transition levels (CTLs) for oxygen vacancies using DFT+GW formalism. We propose an alternative approach to calculate these CTLs, which provides a more efficient way to perform electrostatic correction required because of finite supercell sizes and periodic boundary condition used in first principles calculations. We find that oxygen vacancy in this material has deep donor levels, (+2/+1) at 2.5 eV and a (+1/0) level at 3.8 eV above the VBM. We also study F-center absorption and emission processes using constrained--DFT and BSE. Our calculated absorption and emission energies are in excellent agreement with experimental results.
The electronic transport behaviour of materials determines their suitability for technological applications. We develop an efficient method for calculating carrier scattering rates of solid-state semiconductors and insulators from first principles in
In this work we present a new method for the calculation of the electrostrictive properties of materials using density functional theory. The method relies on the thermodynamical equivalence, in a dielectric, of the quadratic mechanical responses (st
The bulk photovoltaic effect (BPVE) has attracted an increasing interest due to its potential to overcome the efficiency limit of traditional photovoltaics, and much effort has been devoted to understanding its underlying physics. However, previous w
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corr
We calculate the density of states (DOS) and the Mulliken population of the diamond and the co-doped diamonds with different concentrations of lithium (Li) and phosphorus (P) by the method of the density functional theory, and analyze the bonding sit