ترغب بنشر مسار تعليمي؟ اضغط هنا

Planckian dissipation, minimal viscosity and the transport in cuprate strange metals

91   0   0.0 ( 0 )
 نشر من قبل Jan Zaanen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jan Zaanen




اسأل ChatGPT حول البحث

Could it be that the matter from the electrons in high Tc superconductors is of a radically new kind that may be called many body entangled compressible quantum matter? Much of this text is intended as an easy to read tutorial, explaining recent theoretical advances that have been unfolding at the cross roads of condensed matter- and string theory, black hole physics as well as quantum information theory. These developments suggest that the physics of such matter may be governed by surprisingly simple principles. My real objective is to present an experimental strategy to test critically whether these principles are actually at work, revolving around the famous linear resistivity characterizing the strange metal phase. The theory suggests a very simple explanation of this unreasonably simple behavior that is actually directly linked to remarkable results from the study of the quark gluon plasma formed at the heavy ion colliders: the fast hydrodynamization and the minimal viscosity. This leads to high quality predictions for experiment: the momentum relaxation rate governing the resistivity relates directly to the electronic entropy, while at low temperatures the electron fluid should become unviscous to a degree that turbulent flows can develop even on the nanometre scale.



قيم البحث

اقرأ أيضاً

We review the appearance of the Planckian time $tau_text{Pl} = hbar/(k_B T)$ in both conventional and unconventional metals. We give a pedagogical discussion of the various different timescales (quasiparticle, transport, many-body) that characterize metals, emphasizing conditions under which these times are the same or different. Throughout, we have attempted to clear up aspects of the problem that had been confusing us, in the hope that this helps the reader as well. We discuss the possibility of a Planckian bound on dissipation from both a quasiparticle and a many-body perspective. Planckian quasiparticles can arise naturally from a combination of inelastic scattering and mass renormalization. Many-body dynamics, on the other hand, is constrained by the basic time- and length- scales of local thermalization.
The room temperature thermal diffusivity of high T$_c$ materials is dominated by phonons. This allows the scattering of phonons by electrons to be discerned. We argue that the measured strength of this scattering suggests a converse Planckian scatter ing of electrons by phonons across the room temperature phase diagram of these materials. Consistent with this conclusion, the temperature derivative of the resistivity of strongly overdoped cuprates is noted to show a kink at a little below 200 K that we argue should be understood as the onset of a high temperature Planckian $T$-linear scattering of electrons by classical phonons. This kink continuously disappears towards optimal doping, even while strong scattering of phonons by electrons remains visible in the thermal diffusivity, sharpening the long-standing puzzle of the lack of a feature in the $T$-linear resistivity at optimal doping associated to onset of phonon scattering.
55 - J. Gooth , F. Menges , C. Shekhar 2017
Materials with strongly-correlated electrons exhibit interesting phenomena such as metal-insulator transitions and high-temperature superconductivity. In stark contrast to ordinary metals, electron transport in these materials is thought to resemble the flow of viscous fluids. Despite their differences, it is predicted that transport in both, conventional and correlated materials, is fundamentally limited by the uncertainty principle applied to energy dissipation. Here we discover hydrodynamic electron flow in the Weyl-semimetal tungsten phosphide (WP2). Using thermal and magneto-electric transport experiments, we observe the transition from a conventional metallic state, at higher temperatures, to a hydrodynamic electron fluid below 20 K. The hydrodynamic regime is characterized by a viscosity-induced dependence of the electrical resistivity on the square of the channel width, and by the observation of a strong violation of the Wiedemann-Franz law. From magneto-hydrodynamic experiments and complementary Hall measurements, the relaxation times for momentum and thermal energy dissipating processes are extracted. Following the uncertainty principle, both are limited by the Planckian bound of dissipation, independent of the underlying transport regime.
High temperature superconductors are strongly coupled systems which present a complicated phase diagram with many coexisting phases. This makes it difficult to understand the mechanism which generates their singular transport properties. Hydrodynamic s, which mostly relies on the symmetries of the system without referring to any specific microscopic mechanism, constitutes a promising framework to analyze these materials. In this paper we show that in the strange metal phase of the cuprates, a whole set of transport coefficients are described by a universal hydrodynamic framework once one accounts for the effects of quantum critical charge density waves. We corroborate our theoretical prediction by measuring the DC transport properties of Bi-2201 close to optimal doping, proving the validity of our approach. Our argument can be used as a consistency check to understand the universality class governing the behavior of high temperature cuprate superconductors.
Anomalous metallic properties are often observed in the proximity of quantum critical points (QCPs), with violation of the Fermi Liquid paradigm. We propose a scenario where, due to the presence of a nearby QCP, dynamical fluctuations of the order pa rameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces an anomalous metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا