ﻻ يوجد ملخص باللغة العربية
Additional electromagnetic waves and additional boundary conditions (ABCs) in non-local materials attracted a lot of attention in the past. Here we report the possibility of additional propagating and evanescent waves in local anisotropic and bi-anisotropic linear materials. We investigate the possible options for ABCs and describe how to complement the conventional 4 Maxwells boundary conditions in the situations when there are more than 4 waves that need to be matched at the boundary of local and linear quartic metamaterials. We show that these ABCs must depend on the properties of the interface and require the introduction of the additional effective material parameters describing this interface, such as surface conductivities.
We study the phenomenon of additional light waves (ALWs), observed in crystal optics: two or more electromagnetic waves with the same polarization, but different refractive index, propagate simultaneously in a isotropic medium. We show that ALWs are
Nonlocal (spatial-dispersion) effects in multilayered metamaterials composed of periodic stacks of alternating, deeply subwavelength dielectric layers are known to be negligibly weak. Counterintuitively, under certain critical conditions, weak nonloc
Unidirectional in-plane structural anisotropy in Rhenium-based transition metal dichalcogenides (TMDs) introduces a new class of 2-D materials, exhibiting anisotropic optical properties. In this work, we perform temperature dependent, polarization-re
In a recent paper, we argued that systematic uncertainties related to the choice of Cepheid color-luminosity calibration may have a large influence on the tension between the Hubble constant as inferred from distances to Type Ia supernovae and the co
In the context of the celebrated Kuramoto model of globally-coupled phase oscillators of distributed natural frequencies, which serves as a paradigm to investigate spontaneous collective synchronization in many-body interacting systems, we report on