ترغب بنشر مسار تعليمي؟ اضغط هنا

On deformations of compact foliations

68   0   0.0 ( 0 )
 نشر من قبل Rui Loja Fernandes
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine classic stability results for foliations with recent results on deformations of Lie groupoids and Lie algebroids to provide a cohomological characterization for rigidity of compact foliations on compact manifolds.



قيم البحث

اقرأ أيضاً

452 - Alexander Lytchak 2012
We prove that a polar foliation of codimension at least three in an irreducible compact symmetric space is hyperpolar, unless the symmetric space has rank one. For reducible symmetric spaces of compact type, we derive decomposition results for polar foliations.
A leafwise Hodge decomposition was proved by Sanguiao for Riemannian foliations of bounded geometry. Its proof is explained again in terms of our study of bounded geometry for Riemannian foliations. It is used to associate smoothing operators to foli ated flows, and describe their Schwartz kernels. All of this is extended to a leafwise version of the Novikov differential complex.
A contact pair on a manifold always admits an associated metric for which the two characteristic contact foliations are orthogonal. We show that all these metrics have the same volume element. We also prove that the leaves of the characteristic folia tions are minimal with respect to these metrics. We give an example where these leaves are not totally geodesic submanifolds.
We show that a Riemannian foliation on a topological $n$-sphere has leaf dimension 1 or 3 unless n=15 and the Riemannian foliation is given by the fibers of a Riemannian submersion to an 8-dimensional sphere. This allows us to classify Riemannian foliations on round spheres up to metric congruence.
The paper is focused on the existence problem of attractors for foliations. Since the existence of an attractor is a transversal property of the foliation, it is natural to consider foliations admitting transversal geometric structures. As transversa l structures are chosen Cartan geometries due to their universality. The existence problem of an attractor on a complete Cartan foliation is reduced to a similar problem for the action of its structure Lie group on a certain smooth manifold. In the case of a complete Cartan foliation with a structure subordinated to a transformation group, the problem is reduced to the level of the global holonomy group of this foliation. Each countable automorphism group preserving a Cartan geometry on a manifold and admitting an attractor is realized as the global holonomy group of some Cartan foliation with an attractor. Conditions on the linear holonomy group of a leaf of a reductive Cartan foliation sufficient for the existence of an attractor (and a global attractor) which is a minimal set are found. Various examples are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا