We introduce and study the properties of a new family of fractional differential and integral operators which are based directly on an iteration process and therefore satisfy a semigroup property. We also solve some ODEs in this new model and discuss applications of our results.
We establish a new formula for the fractional derivative with Mittag-Leffler kernel, in the form of a series of Riemann-Liouville fractional integrals, which brings out more clearly the non-locality of fractional derivatives and is easier to handle f
or certain computational purposes. We also prove existence and uniqueness results for certain families of linear and nonlinear fractional ODEs defined using this fractional derivative. We consider the possibility of a semigroup property for these derivatives, and establish extensions of the product rule and chain rule, with an application to fractional mechanics.
The main objective of this article is to present $ u$-fractional derivative $mu$-differentiable functions by considering 4-parameters extended Mittag-Leffler function (MLF). We investigate that the new $ u$-fractional derivative satisfies various pro
perties of order calculus such as chain rule, product rule, Rolles and mean-value theorems for $mu$-differentiable function and its extension. Moreover, we define the generalized form of inverse property and the fundamental theorem of calculus and the mean-value theorem for integrals. Also, we establish a relationship with fractional integral through truncated $ u$-fractional integral.
In this paper, we present an extension of Mittag-Leffler function by using the extension of beta functions ({O}zergin et al. in J. Comput. Appl. Math. 235 (2011), 4601-4610) and obtain some integral representation of this newly defined function. Also
, we present the Mellin transform of this function in terms of Wright hypergeometric function. Furthermore, we show that the extended fractional derivative of the usual Mittag-Leffler function gives the extension of Mittag-Leffler function.
This paper deals with the solution of unified fractional reaction-diffusion systems. The results are obtained in compact and elegant forms in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical
computation. On account of the most general character of the derived results, numerous results on fractional reaction, fractional diffusion, and fractional reaction-diffusion problems scattered in the literature, including the recently derived results by the authors for reaction-diffusion models, follow as special cases.
We consider an integral transform introduced by Prabhakar, involving generalised multi-parameter Mittag-Leffler functions, which can be used to introduce and investigate several different models of fractional calculus. We derive a new series expressi
on for this transform, in terms of classical Riemann-Liouville fractional integrals, and use it to obtain or verify series formulae in various specific cases corresponding to different fractional-calculus models. We demonstrate the power of our result by applying the series formula to derive analogues of the product and chain rules in more general fractional contexts. We also discuss how the Prabhakar model can be used to explore the idea of fractional iteration in connection with semigroup properties.