ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross Sections for Inelastic 2-to-2 Meson-Meson Scattering in Hadronic Matter

75   0   0.0 ( 0 )
 نشر من قبل Xiao-Ming Xu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

With quark-antiquark annihilation and creation in the first Born approximation, we study the reactions: $K bar {K} to K bar {K}^ast, ~K bar{K} to K^* bar{K}, ~pi K to pi K^ast, ~pi K to rho K, ~pi pi to K bar{K}^ast, ~pi pi to K^ast bar{K}, ~pi pi to K^ast bar{K}^ast, ~pi rho to K bar{K}, ~pi rho to K^ast bar{K}^ast, ~rho rho to K^ast bar{K}^ast, ~K bar{K}^ast to rho rho$, and $K^* bar{K} to rho rho$. Unpolarized cross sections for the reactions are obtained from transition amplitudes that are composed of mesonic quark-antiquark relative-motion wave functions and the transition potential for quark-antiquark annihilation and creation. From a quark-antiquark potential that is equivalent to the transition potential, we prove that the total spin of the two final mesons may not equal the total spin of the two initial mesons. Based on flavor matrix elements, cross sections for some isospin channels of reactions can be obtained from the other isospin channels of reactions. Remarkable temperature dependence of the cross sections is found.



قيم البحث

اقرأ أيضاً

163 - Zhong-Bo Kang 2008
We study the single-transverse spin asymmetry for open charm production in the semi-inclusive lepton-hadron deep inelastic scattering. We calculate the asymmetry in terms of the QCD collinear factorization approach for $D$ mesons at high enough $P_{h perp}$, and find that the asymmetry is proportional to the twist-three tri-gluon correlation function in the proton. With a simple model for the tri-gluon correlation function, we estimate the asymmetry for both COMPASS and eRHIC kinematics, and discuss the possibilities of extracting the tri-gluon correlation function in these experiments.
We study the effect of a hot and dense medium on the binding energy of hadronic molecules with open-charm mesons. We focus on a recent chiral quark-model-based prediction of a molecular state in the $N bar D$ system. We analyze how the two-body thres holds and the hadron-hadron interactions are modified when quark and meson masses and quark-meson couplings change in a function of the temperature and baryon density according to predictions of the Nambu--Jona-Lasinio model. We find that in some cases the molecular binding is enhanced in medium as compared to their free-space binding. We discuss the consequences of our findings for the search for exotic hadrons in high-energy heavy-ion collisions as well as in the forthcoming facilities FAIR or J-PARC.
99 - M. Wobisch , T. Wengler 1999
The size of non-perturbative corrections to high E_T jet production in deep-inelastic scattering is reviewed. Based on predictions from fragmentation models, hadronization corrections for different jet definitions are compared and the model dependenc e as well as the dependence on model parameters is investigated. To test whether these hadronization corrections can be applied to next-to-leading order (NLO) calculations, jet properties and topologies in different parton cascade models are compared to those in NLO. The size of the uncertainties in estimating the hadronization corrections is compared to the uncertainties of perturbative predictions. It is shown that for the inclusive k_perp ordered jet clustering algorithm the hadronization corrections are smallest and their uncertainties are of the same size as the uncertainties of perturbative NLO predictions.
162 - P. Aurenche , M. Fontannaz 2014
We present the complete next-to-leading order calculation of isolated prompt photon production in association with a jet in deep-inelastic scattering. The calculation involves, direct, resolved and fragmentation contributions. It is shown that defini ng the transverse momenta in the proton virtual-photon frame (CM*), as usually done, or in the laboratory frame (LAB), as done in some experiments, is not equivalent and leads to important differences concerning the perturbative approach. In fact, using the latter frame may preclude, under certain conditions, the calculation of the next-to-leading order correction to the important resolved component. A comparaison with the latest ZEUS data is performed and good agreement is found in the perturbatively stable regions.
We consider meson-baryon interactions in S-wave with strangeness -1. This is a sector populated by plenty of resonances interacting in several two-body coupled channels. We consider a large set of experimental data, where the recent experiments are r emarkably accurate. This requires a sound theoretical description to account for all the data and we employ Unitary Chiral Perturbation Theory up to and including O(p^2). The spectroscopy of our solutions is studied within this approach, discussing the rise from the pole content of two Lambda(1405) resonances and of the Lambda(1670), Lambda(1800), Sigma(1480), Sigma(1620) and Sigma(1750). We finally argue about our preferred fit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا