ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy Survey Year 1 Results: Measurement of the Galaxy Angular Power Spectrum

86   0   0.0 ( 0 )
 نشر من قبل Hugo Camacho
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use data from the first-year (Y1) observations of the DES collaboration to measure the galaxy angular power spectrum (APS), and search for its BAO feature using a template-fitting method. We test our methodology in a sample of 1800 DES Y1-like mock catalogs. The APS is measured with the pseudo-$C_ell$ method, using pixelized maps constructed from the mock catalogs and the DES mask. The covariance matrix of the $C_ell$s in these tests are also obtained from the mock catalogs. We use templates to model the measured spectra and estimate template parameters firstly from the $C_ell$s of the mocks using two different methods, a maximum likelihood estimator and a MCMC, finding consistent results with a good reduced $chi^2$. Robustness tests are performed to estimate the impact of different choices of settings used in our analysis. After these tests on mocks, we apply our method to a galaxy sample constructed from DES Y1 data specifically for LSS studies. This catalog comprises galaxies within an effective area of 1318 deg$^2$ and $0.6<z<1.0$. We fit the observed spectra with our optimized templates, considering models with and without BAO features. We find that the DES Y1 data favors a model with BAO at the $2.6,sigma$ C.L. with a best-fit shift parameter of $alpha=1.023pm 0.047$. However, the goodness-of-fit is somewhat poor, with $chi^2/$(dof) = 1.49. We identify a possible cause of this issue and show that using a theoretical covariance matrix obtained from $C_ell$s that are better adjusted to data results in an improved value of $chi^2/$(dof) = 1.36 which is similar to the value obtained with the real-space analysis. Our results correspond to a distance measurement of $D_A(z_{rm eff} = 0.81)/r_d = 10.65 pm 0.49$, consistent with the main DES BAO findings. This is a companion paper to the main DES BAO article showing the details of the harmonic space analysis.



قيم البحث

اقرأ أيضاً

We define and characterise a sample of 1.3 million galaxies extracted from the first year of Dark Energy Survey data, optimised to measure Baryon Acoustic Oscillations in the presence of significant redshift uncertainties. The sample is dominated by luminous red galaxies located at redshifts $z gtrsim 0.6$. We define the exact selection using color and magnitude cuts that balance the need of high number densities and small photometric redshift uncertainties, using the corresponding forecasted BAO distance error as a figure-of-merit in the process. The typical photo-$z$ uncertainty varies from $2.3%$ to $3.6%$ (in units of 1+$z$) from $z=0.6$ to $1$, with number densities from $200$ to $130$ galaxies per deg$^2$ in tomographic bins of width $Delta z = 0.1$. Next we summarise the validation of the photometric redshift estimation. We characterise and mitigate observational systematics including stellar contamination, and show that the clustering on large scales is robust in front of those contaminants. We show that the clustering signal in the auto-correlations and cross-correlations is generally consistent with theoretical models, which serves as an additional test of the redshift distributions.
123 - J. Prat , C. Sanchez , Y. Fang 2017
We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split int o five tomographic bins in the redshift range $0.15 < z < 0.9$. We use two different source samples, obtained from the Metacalibration (26 million galaxies) and Im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range $0.2 < z < 1.3$. We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-$z$ studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient $r$ to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.
In this paper we present and validate the galaxy sample used for the analysis of the Baryon Acoustic Oscillation signal (BAO) in the Dark Energy Survey (DES) Y3 data. The definition is based on a colour and redshift-dependent magnitude cut optimized to select galaxies at redshifts higher than 0.5, while ensuring a high quality photometric redshift determination. The sample covers $approx 4100$ square degrees to a depth of $i = 22.3 (AB)$ at $10sigma$. It contains 7,031,993 galaxies in the redshift range from $z$= 0.6 to 1.1, with a mean effective redshift of 0.835. Photometric redshifts are estimated with the machine learning algorithm DNF, and are validated using the VIPERS PDR2 sample. We find a mean redshift bias of $z_{mathrm{bias}} approx 0.01$ and a mean uncertainty, in units of $1+z$, of $sigma_{68} approx 0.03$. We evaluate the galaxy population of the sample, showing it is mostly built upon Elliptical to Sbc types. Furthermore, we find a low level of stellar contamination of $lesssim 4%$. We present the method used to mitigate the effect of spurious clustering coming from observing conditions and other large-scale systematics. We apply it to the DES Y3 BAO sample and calculate sample weights that are used to get a robust estimate of the galaxy clustering signal. This paper is one of a series dedicated to the analysis of the BAO signal in the DES Y3 data. In the companion papers, Ferrero et al. (2021) and DES Collaboration (2021), we present the galaxy mock catalogues used to calibrate the analysis and the angular diameter distance constraints obtained through the fitting to the BAO scale, respectively. The galaxy sample, masks and additional material will be released in the public DES data repository upon acceptance.
We measure the clustering of DES Year 1 galaxies that are intended to be combined with weak lensing samples in order to produce precise cosmological constraints from the joint analysis of large-scale structure and lensing correlations. Two-point corr elation functions are measured for a sample of $6.6 times 10^{5}$ luminous red galaxies selected using the textsc{redMaGiC} algorithm over an area of $1321$ square degrees, in the redshift range $0.15 < z < 0.9$, split into five tomographic redshift bins. The sample has a mean redshift uncertainty of $sigma_{z}/(1+z) = 0.017$. We quantify and correct spurious correlations induced by spatially variable survey properties, testing their impact on the clustering measurements and covariance. We demonstrate the samples robustness by testing for stellar contamination, for potential biases that could arise from the systematic correction, and for the consistency between the two-point auto- and cross-correlation functions. We show that the corrections we apply have a significant impact on the resultant measurement of cosmological parameters, but that the results are robust against arbitrary choices in the correction method. We find the linear galaxy bias in each redshift bin in a fiducial cosmology to be $b(z$=$0.24)=1.40 pm 0.08$, $b(z$=$0.38)=1.61 pm 0.05$, $b(z$=$0.53)=1.60 pm 0.04$ for galaxies with luminosities $L/L_*>$$0.5$, $b(z$=$0.68)=1.93 pm 0.05$ for $L/L_*>$$1$ and $b(z$=$0.83)=1.99 pm 0.07$ for $L/L_*$$>1.5$, broadly consistent with expectations for the redshift and luminosity dependence of the bias of red galaxies. We show these measurements to be consistent with the linear bias obtained from tangential shear measurements.
83 - S. Avila , M. Crocce , A.J. Ross 2017
Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a $2LPT$ density field with an exponential bias. For each of them, a lightcone is constructed by the superposition of snapshots in the redshift range $0.45<z<1.4$. Uncertainties introduced by so-called photometric redshifts estimators were modelled with a textit{double-skewed-Gaussian} curve fitted to the data. We also introduce a hybrid HOD-HAM model with two free parameters that are adjusted to achieve a galaxy bias evolution $b(z_{rm ph})$ that matches the data at the 1-$sigma$ level in the range $0.6<z_{rm ph}<1.0$. We further analyse the galaxy mock catalogues and compare their clustering to the data using the angular correlation function $ w(theta)$, the comoving transverse separation clustering $xi_{mu<0.8}(s_{perp})$ and the angular power spectrum $C_ell$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا