ﻻ يوجد ملخص باللغة العربية
It is arguably in the X-ray regime that Narrow-line Seyfert 1 galaxies (NLS1s) exhibit the most extreme behaviour. Spectral complexity, rapid and large amplitude flux variations, and exceptional spectral variability are well known characteristics. However, NLS1s are not eccentric, but form a continuous sequence with typical Seyfert 1 galaxies. Understanding the extreme behaviour displayed by NLS1s will provide insight to the general AGN phenomenon. In this review, I will examine some of the important NLS1 X-ray discoveries over the past twenty years. I will then explore recent work that looks at the nature of the primary X-ray source (i.e. the corona) in NLS1s, demonstrating how the corona can be compact, dynamic, and in some cases consistent with collimated outflow. X-ray observations of NLS1s will be key in determining the nature of the corona, resolving the disc-jet connection, and determining the origin of the radio loud/quiet dichotomy in AGN.
Narrow-line Seyfert,1 galaxies (NLS1s) with very small broad-line widths (say, FWHM(hb) $la $ 1200,kms) represent the extreme type of Seyfert,1 galaxies that have small black hole masses (mbh) and/or high Eddington ratios (redd). Here we study the X-
The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emittin
Narrow-line Seyfert 1 galaxies (NLS1s) is one of the few classes of active galactic nuclei (AGN) harboring powerful relativistic jets and detected in $gamma$ rays. NLS1s are well-known X-ray sources. While in non-jetted sources the origin of this X-r
Before the launch of the Fermi Gamma-ray Space Telescope satellite only two classes of active galactic nuclei (AGN) were known to generate relativistic jets and thus to emit up to the $gamma$-ray energy range: blazars and radio galaxies, both hosted
We report the analysis of all Swift observations available up to 2019 April of $gamma$-ray-emitting narrow-line Seyfert 1 galaxies (NLSy1). The distribution of X-ray luminosities (and fluxes) indicates that the jet radiation significantly contributes