ﻻ يوجد ملخص باللغة العربية
The inverse problem methodology is a commonly-used framework in the sciences for parameter estimation and inference. It is typically performed by fitting a mathematical model to noisy experimental data. There are two significant sources of error in the process: 1. Noise from the measurement and collection of experimental data and 2. numerical error in approximating the true solution to the mathematical model. Little attention has been paid to how this second source of error alters the results of an inverse problem. As a first step towards a better understanding of this problem, we present a modeling and simulation study using a simple advection-driven PDE model. We present both analytical and computational results concerning how the different sources of error impact the least squares cost function as well as parameter estimation and uncertainty quantification. We investigate residual patterns to derive an autocorrelative statistical model that can improve parameter estimation and confidence interval computation for first order methods. Building on the results of our investigation, we provide guidelines for practitioners to determine when numerical or experimental error is the main source of error in their inference, along with suggestions of how to efficiently improve their results.
We consider a size-structured model for cell division and address the question of determining the division (birth) rate from the measured stable size distribution of the population. We propose a new regularization technique based on a filtering appro
The Alternating Direction Method of Multipliers (ADMM) provides a natural way of solving inverse problems with multiple partial differential equations (PDE) forward models and nonsmooth regularization. ADMM allows splitting these large-scale inverse
A convexification-based numerical method for a Coefficient Inverse Problem for a parabolic PDE is presented. The key element of this method is the presence of the so-called Carleman Weight Function in the numerical scheme. Convergence analysis ensure
For the first time, we develop a convergent numerical method for the llinear integral equation derived by M.M. Lavrentev in 1964 with the goal to solve a coefficient inverse problem for a wave-like equation in 3D. The data are non overdetermined. Con
We consider the numerical analysis of the inchworm Monte Carlo method, which is proposed recently to tackle the numerical sign problem for open quantum systems. We focus on the growth of the numerical error with respect to the simulation time, for wh