ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous-Time Markov Decisions based on Partial Exploration

90   0   0.0 ( 0 )
 نشر من قبل Pranav Ashok
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a framework for speeding up algorithms for time-bounded reachability analysis of continuous-time Markov decision processes. The principle is to find a small, but almost equivalent subsystem of the original system and only analyse the subsystem. Candidates for the subsystem are identified through simulations and iteratively enlarged until runs are represented in the subsystem with high enough probability. The framework is thus dual to that of abstraction refinement. We instantiate the framework in several ways with several traditional algorithms and experimentally confirm orders-of-magnitude speed ups in many cases.



قيم البحث

اقرأ أيضاً

70 - Ming Xu , Jingyi Mei , Ji Guan 2021
Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we initialised the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time system, we specify the temporal properties on QCTMC by si gnal temporal logic (STL). To effectively check the atomic propositions in STL, we develop a state-of-art real root isolation algorithm under Schanuels conjecture; further, we check the general STL formula by interval operations with a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula by calling the real root isolation algorithm. A running example of an open quantum walk is provided to demonstrate our method.
69 - Zhizhong Li , Dahua Lin 2017
Specialized classifiers, namely those dedicated to a subset of classes, are often adopted in real-world recognition systems. However, integrating such classifiers is nontrivial. Existing methods, e.g. weighted average, usually implicitly assume that all constituents of an ensemble cover the same set of classes. Such methods can produce misleading predictions when used to combine specialized classifiers. This work explores a novel approach. Instead of combining predictions from individual classifiers directly, it first decomposes the predictions into sets of pairwise preferences, treating them as transition channels between classes, and thereon constructs a continuous-time Markov chain, and use the equilibrium distribution of this chain as the final prediction. This way allows us to form a coherent picture over all specialized predictions. On large public datasets, the proposed method obtains considerable improvement compared to mainstream ensemble methods, especially when the classifier coverage is highly unbalanced.
Modern control is implemented with digital microcontrollers, embedded within a dynamical plant that represents physical components. We present a new algorithm based on counter-example guided inductive synthesis that automates the design of digital co ntrollers that are correct by construction. The synthesis result is sound with respect to the complete range of approximations, including time discretization, quantization effects, and finite-precision arithmetic and its rounding errors. We have implemented our new algorithm in a tool called DSSynth, and are able to automatically generate stable controllers for a set of intricate plant models taken from the literature within minutes.
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation ally tractable, they rely on a number of assumptions that may not be realistic for the domain of application; in particular, the ability to provide exact numerical parameter assessments, and the applicability of time-homogeneity and the eponymous Markov property. In this work, we extend these models to imprecise continuous-time Markov chains (ICTMCs), which are a robust generalisation that relaxes these assumptions while remaining computationally tractable. More technically, an ICTMC is a set of precise continuous-time finite-state stochastic processes, and rather than computing expected values of functions, we seek to compute lower expectations, which are tight lower bounds on the expectations that correspond to such a set of precise models. Note that, in contrast to e.g. Bayesian methods, all the elements of such a set are treated on equal grounds; we do not consider a distribution over this set. The first part of this paper develops a formalism for describing continuous-time finite-state stochastic processes that does not require the aforementioned simplifying assumptions. Next, this formalism is used to characterise ICTMCs and to investigate their properties. The concept of lower expectation is then given an alternative operator-theoretic characterisation, by means of a lower transition operator, and the properties of this operator are investigated as well. Finally, we use this lower transition operator to derive tractable algorithms (with polynomial runtime complexity w.r.t. the maximum numerical error) for computing the lower expectation of functions that depend on the state at any finite number of time points.
183 - Bassel Tarbush 2013
Moses & Nachum ([7]) identify conceptual flaws in Bacharachs generalization ([3]) of Aumanns seminal agreeing to disagree result ([1]). Essentially, Bacharachs framework requires agents decision functions to be defined over events that are informatio nally meaningless for the agents. In this paper, we argue that the analysis of the agreement theorem should be carried out in information structures that can accommodate for counterfactual states. We therefore develop a method for constructing such counterfactual structures (starting from partitional structures), and prove a new agreement theorem within such structures. Furthermore, we show that our approach also resolves the conceptual flaws in the sense that, within our framework, decision functions are always only defined over events that are informationally meaningful for the agents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا