ﻻ يوجد ملخص باللغة العربية
We report a detailed analysis of the orbital properties of binary millisecond pulsar (MSP) with a white dwarf (WD) companion. Positive correlations between the orbital period $P_{rm b}$ and eccentricity $epsilon$ are found in two classes of MSP binaries with a He WD and with a CO/ONeMg WD, though their trends are different. The distribution of $P_{rm b}$ is not uniform. Deficiency of sources at $P_{rm b}sim35-50$~days (Gap 1) have been mentioned in previous studies. On the other hand, another gap at $P_{rm b}sim2.5-4.5$~days (Gap 2) is identified for the first time. Inspection of the relation between $P_{rm b}$ and the companion masses $M_{rm c}$ revealed the subpopulations of MSP binaries with a He WD separated by Gap 1, above which $P_{rm b}$ is independent of $M_{rm c}$ (horizontal branch) but below which $P_{rm b}$ correlates strongly with $M_{rm c}$ (lower branch). Distinctive horizontal branch and lower branch separated by Gap 2 were identified for the MSP binaries with a CO/ONeMg WD at shorter $P_{rm b}$ and higher $M_{rm c}$. Generally, $M_{rm c}$ are higher in the horizontal branch than in the lower branch for the MSP binaries with a He WD. These properties can be explained in terms of a binary orbital evolution scenario in which the WD companion was ablated by a pulsar wind in the post mass-transfer phase.
We present the first optical spectroscopy of five confirmed (or strong candidate) redback millisecond pulsar binaries, obtaining complete radial velocity curves for each companion star. The properties of these millisecond pulsar binaries with low-mas
Pulsar winds interacting with sources of external pressure are well-established as efficient and prolific TeV accelerators in our Galaxy. Yet, enabled by observations from Fermi-LAT, a growing class of non-accreting pulsars in binaries has emerged an
The accreting millisecond pulsars IGR J00291+5934 and SAX J1808.4-3658 are two compact binaries with very similar orbital parameters. The latter has been observed to evolve on a very short timescale of ~70 Myr which is more than an order of magnitude
Linares et al. (2016) obtained quasi-simultaneous g, r and i-band light curves and an absorption line radial velocity curve of the secondary star in the redback system 3FGL J0212.1+5320. The light curves showed two maxima and minima primarily due to
Redback millisecond pulsars (MSPs) typically show pronounced orbital variability in their X-ray emission due to our changing view of the intrabinary shock (IBS) between the pulsar wind and stellar wind from the companion. Some redbacks (transitional