Sampling-based probabilistic inference emerges from learning in neural circuits with a cost on reliability


الملخص بالإنكليزية

Neural responses in the cortex change over time both systematically, due to ongoing plasticity and learning, and seemingly randomly, due to various sources of noise and variability. Most previous work considered each of these processes, learning and variability, in isolation -- here we study neural networks exhibiting both and show that their interaction leads to the emergence of powerful computational properties. We trained neural networks on classical unsupervised learning tasks, in which the objective was to represent their inputs in an efficient, easily decodable form, with an additional cost for neural reliability which we derived from basic biophysical considerations. This cost on reliability introduced a tradeoff between energetically cheap but inaccurate representations and energetically costly but accurate ones. Despite the learning tasks being non-probabilistic, the networks solved this tradeoff by developing a probabilistic representation: neural variability represented samples from statistically appropriate posterior distributions that would result from performing probabilistic inference over their inputs. We provide an analytical understanding of this result by revealing a connection between the cost of reliability, and the objective for a state-of-the-art Bayesian inference strategy: variational autoencoders. We show that the same cost leads to the emergence of increasingly accurate probabilistic representations as networks become more complex, from single-layer feed-forward, through multi-layer feed-forward, to recurrent architectures. Our results provide insights into why neural responses in sensory areas show signatures of sampling-based probabilistic representations, and may inform future deep learning algorithms and their implementation in stochastic low-precision computing systems.

تحميل البحث