ﻻ يوجد ملخص باللغة العربية
Driving a quantum system at finite frequency allows one to explore its dynamics. This has become a well mastered resource for controlling the quantum state of two level systems in the context of quantum information processing. However, this can also be of fundamental interest, especially with many-body systems which display an intricate finite frequency behavior. In condensed matter, the Kondo effect epitomizes strong electronic correlations, but the study of its dynamics and the related scaling laws has remained elusive so far. Here, we fill this gap by studying a carbon nanotube based Kondo quantum dot driven by a microwave signal. Our findings not only confirm long-standing theoretical predictions, but also allow us to establish a simple ansatz for the scaling laws on the Kondo problem at finite frequency. More generally, our technique opens a new path for understanding the dynamics of complex quantum dot circuits in the context of quantum simulation of strongly correlated electron fluids.
Using the known solutions of the Lugiato-Lefever equation, we derive universal trends of Kerr frequency combs. In particular, normalized properties of temporal cavity soliton solutions lead us to a simple analytic estimate of the maximum attainable b
We study the entanglement entropy(EE) of disordered one-dimensional spinless fermions with attractive interactions. With intensive numerical calculation of the EE using the density matrix renormalization group method, we find clear signatures of the
The phonon-assisted sticking rate of slow moving atoms impinging on an elastic membrane at nonzero temperature is studied analytically using a model with linear atom-phonon interactions, valid in the weak coupling regime. A perturbative expansion of
A system of two exchange-coupled Kondo impurities in a magnetic field gives rise to a rich phase space hosting a multitude of correlated phenomena. Magnetic atoms on surfaces probed through scanning tunnelling microscopy provide an excellent platform
Magnetic impurities with sufficient anisotropy could account for the observed strong deviation of the edge conductance of 2D topological insulators from the anticipated quantized value. In this work we consider such a helical edge coupled to dilute i