ﻻ يوجد ملخص باللغة العربية
Deep learning is a powerful analysis technique that has recently been proposed as a method to constrain cosmological parameters from weak lensing mass maps. Due to its ability to learn relevant features from the data, it is able to extract more information from the mass maps than the commonly used power spectrum, and thus achieve better precision for cosmological parameter measurement. We explore the advantage of Convolutional Neural Networks (CNN) over the power spectrum for varying levels of shape noise and different smoothing scales applied to the maps. We compare the cosmological constraints from the two methods in the $Omega_M-sigma_8$ plane for sets of 400 deg$^2$ convergence maps. We find that, for a shape noise level corresponding to 8.53 galaxies/arcmin$^2$ and the smoothing scale of $sigma_s = 2.34$ arcmin, the network is able to generate 45% tighter constraints. For smaller smoothing scale of $sigma_s = 1.17$ the improvement can reach $sim 50 %$, while for larger smoothing scale of $sigma_s = 5.85$, the improvement decreases to 19%. The advantage generally decreases when the noise level and smoothing scales increase. We present a new training strategy to train the neural network with noisy data, as well as considerations for practical applications of the deep learning approach.
Convolutional Neural Networks (CNN) have recently been demonstrated on synthetic data to improve upon the precision of cosmological inference. In particular they have the potential to yield more precise cosmological constraints from weak lensing mass
We examine the cosmological information available from the 1-point probability distribution (PDF) of the weak-lensing convergence field, utilizing fast L-PICOLA simulations and a Fisher analysis. We find competitive constraints in the $Omega_m$-$sigm
We present a deep machine learning (ML)-based technique for accurately determining $sigma_8$ and $Omega_m$ from mock 3D galaxy surveys. The mock surveys are built from the AbacusCosmos suite of $N$-body simulations, which comprises 40 cosmological vo
Line intensity mapping (LIM) is a promising observational method to probe large-scale fluctuations of line emission from distant galaxies. Data from wide-field LIM observations allow us to study the large-scale structure of the universe as well as ga
Stage IV lensing surveys promise to make available an unprecedented amount of excellent data which will represent a huge leap in terms of both quantity and quality. This will open the way to the use of novel tools, which go beyond the standard second