ﻻ يوجد ملخص باللغة العربية
We show that any equicontractive, self-similar measure arising from the IFS of contractions $(S_{j})$, with self-similar set $[0,1]$, admits an isolated point in its set of local dimensions provided the images of $S_{j}(0,1)$ (suitably) overlap and the minimal probability is associated with one (resp., both) of the endpoint contractions. Examples include $m$-fold convolution products of Bernoulli convolutions or Cantor measures with contraction factor exceeding $1/(m+1)$ in the biased case and $1/m$ in the unbiased case. We also obtain upper and lower bounds on the set of local dimensions for various Bernoulli convolutions.
It is known that the heuristic principle, referred to as the multifractal formalism, need not hold for self-similar measures with overlap, such as the $3$-fold convolution of the Cantor measure and certain Bernoulli convolutions. In this paper we stu
The upper and lower Assouad dimensions of a metric space are local variants of the box dimensions of the space and provide quantitative information about the `thickest and `thinnest parts of the set. Less extre
In this paper we prove that if ${varphi_i(x)=lambda x+t_i}$ is an equicontractive iterated function system and $b$ is a positive integer satisfying $frac{log b}{log |lambda|} otinmathbb{Q},$ then almost every $x$ is normal in base $b$ for any non-atomic self-similar measure of ${varphi_i}$.
S. Baker (2019), B. Barany and A. K{a}enm{a}ki (2019) independently showed that there exist iterated function systems without exact overlaps and there are super-exponentially close cylinders at all small levels. We adapt the method of S. Baker and ob
We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $Asubset mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $sin [p-2, p-1)$, we prove that th