ترغب بنشر مسار تعليمي؟ اضغط هنا

Person Search by Multi-Scale Matching

98   0   0.0 ( 0 )
 نشر من قبل Xu Lan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of person search in unconstrained scene images. Existing methods usually focus on improving the person detection accuracy to mitigate negative effects imposed by misalignment, mis-detections, and false alarms resulted from noisy people auto-detection. In contrast to previous studies, we show that sufficiently reliable person instance cropping is achievable by slightly improved state-of-the-art deep learning object detectors (e.g. Faster-RCNN), and the under-studied multi-scale matching problem in person search is a more severe barrier. In this work, we address this multi-scale person search challenge by proposing a Cross-Level Semantic Alignment (CLSA) deep learning approach capable of learning more discriminative identity feature representations in a unified end-to-end model. This is realised by exploiting the in-network feature pyramid structure of a deep neural network enhanced by a novel cross pyramid-level semantic alignment loss function. This favourably eliminates the need for constructing a computationally expensive image pyramid and a complex multi-branch network architecture. Extensive experiments show the modelling advantages and performance superiority of CLSA over the state-of-the-art person search and multi-scale matching methods on two large person search benchmarking datasets: CUHK-SYSU and PRW.



قيم البحث

اقرأ أيضاً

In [1], we proposed a graph-based formulation that links and clusters person hypotheses over time by solving a minimum cost subgraph multicut problem. In this paper, we modify and extend [1] in three ways: 1) We introduce a novel local pairwise featu re based on local appearance matching that is robust to partial occlusion and camera motion. 2) We perform extensive experiments to compare different pairwise potentials and to analyze the robustness of the tracking formulation. 3) We consider a plain multicut problem and remove outlying clusters from its solution. This allows us to employ an efficient primal feasible optimization algorithm that is not applicable to the subgraph multicut problem of [1]. Unlike the branch-and-cut algorithm used there, this efficient algorithm used here is applicable to long videos and many detections. Together with the novel feature, it eliminates the need for the intermediate tracklet representation of [1]. We demonstrate the effectiveness of our overall approach on the MOT16 benchmark [2], achieving state-of-art performance.
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In parti cular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid person matching network (PPMN) to obtain correspondence representations. These correspondence representations are fused to perform the re-identification task. Further, the proposed framework is optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art literature, especially on the rank-1 recognition rate.
Most existing person re-identification (ReID) methods rely only on the spatial appearance information from either one or multiple person images, whilst ignore the space-time cues readily available in video or image-sequence data. Moreover, they often assume the availability of exhaustively labelled cross-view pairwise data for every camera pair, making them non-scalable to ReID applications in real-world large scale camera networks. In this work, we introduce a novel video based person ReID method capable of accurately matching people across views from arbitrary unaligned image-sequences without any labelled pairwise data. Specifically, we introduce a new space-time person representation by encoding multiple granularities of spatio-temporal dynamics in form of time series. Moreover, a Time Shift Dynamic Time Warping (TS-DTW) model is derived for performing automatically alignment whilst achieving data selection and matching between inherently inaccurate and incomplete sequences in a unified way. We further extend the TS-DTW model for accommodating multiple feature-sequences of an image-sequence in order to fuse information from different descriptions. Crucially, this model does not require pairwise labelled training data (i.e. unsupervised) therefore readily scalable to large scale camera networks of arbitrary camera pairs without the need for exhaustive data annotation for every camera pair. We show the effectiveness and advantages of the proposed method by extensive comparisons with related state-of-the-art approaches using two benchmarking ReID datasets, PRID2011 and iLIDS-VID.
Person Search is designed to jointly solve the problems of Person Detection and Person Re-identification (Re-ID), in which the target person will be located in a large number of uncut images. Over the past few years, Person Search based on deep learn ing has made great progress. Visual character attributes play a key role in retrieving the query person, which has been explored in Re-ID but has been ignored in Person Search. So, we introduce attribute learning into the model, allowing the use of attribute features for retrieval task. Specifically, we propose a simple and effective model called Multi-Attribute Enhancement (MAE) which introduces attribute tags to learn local features. In addition to learning the global representation of pedestrians, it also learns the local representation, and combines the two aspects to learn robust features to promote the search performance. Additionally, we verify the effectiveness of our module on the existing benchmark dataset, CUHK-SYSU and PRW. Ultimately, our model achieves state-of-the-art among end-to-end methods, especially reaching 91.8% of mAP and 93.0% of rank-1 on CUHK-SYSU.Codes and models are available at https://github.com/chenlq123/MAE.
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs a similiarity value indicating whether the two input images represent the same person or not. Based on deep convolutional neural networks, our approach first learns the discriminative semantic representation with the semantic-component-aware features for persons and then employs the Pyramid Matching Module to match the common semantic-components of persons, which is robust to the variation of spatial scales and misalignment of locations posed by viewpoint changes. The above two processes are jointly optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art approaches, especially on the rank-1 recognition rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا