We consider the application of implicit and linearly implicit (Rosenbrock-type) peer methods to matrix-valued ordinary differential equations. In particular the differential Riccati equation (DRE) is investigated. For the Rosenbrock-type schemes, a reformulation capable of avoiding a number of Jacobian applications is developed that, in the autonomous case, reduces the computational complexity of the algorithms. Dealing with large-scale problems, an efficient implementation based on low-rank symmetric indefinite factorizations is presented. The performance of both peer approaches up to order 4 is compared to existing implicit time integration schemes for matrix-valued differential equations.